Assessment of the adsorption capacity of phenol on magnetic activated carbon

Author(s):  
Degival Rodrigues Gonçalves Júnior ◽  
Paulo Cardozo Carvalho Araújo ◽  
André Luis Gomes Simões ◽  
Fernando Augusto Pedersen Voll ◽  
Marcela Prado Silva Parizi ◽  
...  
BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 70-80
Author(s):  
Boyang Jia ◽  
Ling Su ◽  
Guangqian Han ◽  
Guangping Wang ◽  
Jian Zhang ◽  
...  

Nickel-based magnetic activated carbon was synthesized from coconut shell activated carbon by electroless plating with palladium-free activation. The effect of plating solution volume on metallic ratio and adsorption capacity were evaluated. The effect of metallic ratio on specific area, pore volume, and magnetic properties were investigated. The morphologies of activated carbon before and after plating were observed by SEM, and the composition of the layer was analyzed by EDS analysis. The results showed that the metallic ratio was increased with the increase of the plating solution volume. The magnetic activated carbon showed high adsorption capacity for methylene blue and a high iodine number. Those values reached 142.5 mg/g and 1035 mg/g, respectively. The specific area and pore volume decreased from 943 m2/g to 859 m2/g and 0.462 ml/g to 0.417 ml/g, respectively. And the layer was more compact and continuous when the metallic ratio reached 16.37 wt.%. In the layer, there was about 97 wt.% nickel and 3 wt.% phosphorus, which indicates that the layer was a low-phosphorus one. At the same time, magnetism was enhanced, making the product suitable for some special applications.


2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 598
Author(s):  
David Ribes ◽  
Emilia Morallón ◽  
Diego Cazorla-Amorós ◽  
Francisco Osorio ◽  
María J. García-Ruiz

The adsorption and electroadsorption of bromide from natural water has been studied in a filter-press electrochemical cell using a commercial granular activated carbon as the adsorbent. During electroadsorption experiments, different voltages were applied (2 V, 3 V and 4 V) under anodic conditions. The presence of the electric field improves the adsorption capacity of the activated carbon. The decrease in bromide concentration observed at high potentials (3 V or 4 V) may be due to the electrochemical transformation of bromide to Br2. The anodic treatment produces a higher decrease in the concentration of bromide in the case of cathodic electroadsorption. Moreover, in this anodic electroadsorption, if the system is again put under open circuit conditions, no desorption of the bromide is produced. In the case of anodic treatment in the following adsorption process after 24 h of treatment at 3 V, a new decrease in the bromide concentration is observed as a consequence of the decrease in bromide concentration after the electrochemical stage. It can be concluded that the electroadsorption process is effective against the elimination of bromide and total bromine in water, with a content of 345 and 470 µg L−1, respectively, reaching elimination values of 46% in a single-stage electroadsorption process in bromide and total bromine. The application of the electric field to the activated carbon with a positive polarization (anodic electroadsorption) increases the adsorption capacity of the activated carbon significantly, achieving a reduction of up to 220 µg L−1 after 1 h of contact with water. The two stage process in which a previous electrochemical oxidation is incorporated before the electroadsorption stage significantly increased the efficiency from 46% in a single electroadsorption step at 3 V, to 59% in two stages.


2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


Sign in / Sign up

Export Citation Format

Share Document