Study of the Porous Structure and High Adsorption Capacity of Biomass-Based Activated Carbon Prepared from Aspen Wood by Ferric Nitrate III Activation

2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.

BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 729-746
Author(s):  
Junhong Zhang ◽  
Zhi-jun He ◽  
Qing Guo ◽  
De-chao Xiao ◽  
Wen-long Zhan

Microwave modification of activated coke is reported as a green and simple route to improve its synergistic desulfurization and denitrification. The results showed that microwave irradiation improved the specific surface area and pore volume, decreased the pore size, and activated the surface functional groups of the activated coke. Under the conditions of a microwave power of 500 W and a modification time of 30 min, the specific surface area was increased from 185.9 m2/g to 351.7 m2/g, the pore volume increased from 0.042 m3/g to 0.111 m3/g, and the characteristic peak strengths of C=C and -OH drastically increased. When the reaction temperature was 140 °C and the O2 concentration was 10% (by volume), the desulfurization and denitrification efficiency were maintained at levels greater than 90% and 80% for 30 min and 15 min, respectively. The C-O content increased, and the C=C and -OH content decreased after undergoing desulfurization and denitrification. The desulfurization and denitrification products were primarily sulfate and nitrate. This provides theoretical support for the application of microwave modified active coke in low temperature desulfurization and denitrification.


1992 ◽  
Vol 9 (4) ◽  
pp. 244-257 ◽  
Author(s):  
S. Hawash ◽  
J.Y. Farah ◽  
M.S. El-Geundi

Natural and activated clays have been investigated as adsorbents for the removal of nickel from wastewater. Analysis of the natural clay under test showed that it was composed, approximately of 51% kaolinite, 46% montmorillonite and 3% illite, having a specific surface area of 65 m2/g. The natural clay was treated with different activators (HCl, NaCl and H2O2) to enhance its adsorption capacity towards nickel. The efficiency of such activation was greater by 16.0% and 23.2% in the case of NaCl and H2O2, respectively, relative to untreated clay. No significant increase in the adsorption capacity was brought about by HCl treatment. A limited comparison has been made between clay and activated carbon by performing isotherm studies under similar conditions. The results indicate that the adsorption capacity of clay activated with H2O2, clay activated with NaCl and natural clay is 216.9%, 204.2% and 176.1% that of activated carbon, respectively. Based solely on the adsorption capacity, an economic analysis demonstrates that natural clay is the cheapest material, followed by clay activated with NaCl and clay activated with H2O2. The relative costs of removing nickel using natural clay, clay activated with NaCl and clay activated with H2O2 were found to be 2.8%, 5.4% and 25.4%, respectively, that of activated carbon.


2017 ◽  
Vol 36 (3-4) ◽  
pp. 904-918 ◽  
Author(s):  
Deyong Guo ◽  
Xiaojie Guo

In this paper, scanning electron microscopy, low-temperature N2 adsorption and CH4 isothermal adsorption experiments were performed on 11 coal samples with Ro,max between 0.98 and 3.07%. The pore structure characteristics of coals (specific surface area, total volume distribution) were studied to assess the gas adsorption capacity. The results indicate that there is significant heterogeneity on coal surface, containing numerous channel-like pores, bottle-shaped pores and wedge-shaped pores. Both Langmuir volume (VL) and Langmuir pressure (PL) show a stage change trend with the increase of coalification degree. For different coalification stages, there exist different factors influencing the VL and PL values. For low-rank coals (Ro,max < 1.1%), the increase of VL values and decrease of PL values are mainly due to the abundant primary pore and fracture within coal. For middle-rank coals (1.1% < Ro,max < 2.1%), the moisture content, vitrinite content and total pore volume are all the factors influencing VL, and the reduction of PL is mainly attributed to the decrease of moisture content and inertinite content. Meanwhile, this result is also closely related to the pore shape. For high-rank coals (Ro,max > 2.1%), VL values gradually increase and reach the maximum. When the coal has evolved into anthracite, liquid hydrocarbon within pore begins pyrolysis and gradually disappears, and a large number of macropores are converted into micropores, leading to the increase of specific surface area and total pore volume, corresponding to the increase of VL. In addition, the increase of vitrinite content within coal also contributes to the increase of VL. PL, reaches the minimum, indicating that the adsorption rate reaches the largest at the low pressure stage. The result is mainly controlled by the specific surface area and total pore volume of coal samples. This research results will provide a clearer insight into the relationship between adsorption parameters and coal rank, moisture content, maceral composition and pore structure, and it is of great significance for better assessing the gas adsorption capacity.


2015 ◽  
Vol 1090 ◽  
pp. 154-159
Author(s):  
Sheng Zhou Zhang ◽  
Hong Ying Xia ◽  
Li Bo Zhang ◽  
Jin Hui Peng ◽  
Jian Wu ◽  
...  

Bamboo as the raw material is carbonized to prepare high specific surface area activated carbon by microwave heating under nitrogen atmosphere in our present work. Influences of activation agents on the preparation of activated carbon are studied. The results show that activation agents have a significant influence on the preparation of activated carbon. Under the heating time of 15 min, the adsorption capacity of the activated carbon prepared utilizing KOH as activation agent is the best. When the KOH/C ratio is 4, the iodine number and yield of activated carbon are 2298 mg/g and 39.82%, respectively. The BET specific surface area, total pore volume and average pore diameter of activated carbon are 3441 m2/g, 2.093 ml/g and 2.434 nm, respectively. The micropore volume of 1.304 ml/g is 62.30% of total pore volume, indicating that the activated carbon is microporous activated carbon.


2014 ◽  
Vol 976 ◽  
pp. 207-211 ◽  
Author(s):  
Alejandra Alicia Peláez Cid ◽  
Araceli Vázquez Barranco ◽  
Ana María Herrera González

This paper presents the results of the adsorption of textile dyes in static systems, using adsorbent materials prepared from broccoli waste collected after harvest. The adsorption capacities of the non-activated lignocellulosic residue (BrocNat), the chemically activated waste using sodium hydroxide (BrocNaOH), the thermally activated at 823 K ash (AshBroc), and the chemically activated carbon using phosphoric acid at 673 K (CarBrocQ) were tested. Aqueous solutions containing cationic and anionic dyes as well as textile effluents generated after the dyeing process of a cotton-processing factory containing vat and reactive dyes were treated. Lignocellulosic materials were only effective in removing dyes when they were found in aqueous solution. The carbonaceous adsorbent CarBrocQ presented removal percentages close to 100% and between 13 and 75% for reactive and vat dyes contained in the effluents respectively. To accomplish the complete elimination of color from effluents containing vat dyes, these were treated before adsorption, using aluminum chlorohydrate and poly(acrylamide-co-sodium acrylate) as coagulant and flocculant agents, respectively. The COD of the effluent containing vat dyes was reduced up to 93% after both treatments were combined, and the removal of color was absolute. The high adsorption capacity of CarBrocQ occurs because of its high specific surface area, which was determined by N2 adsorption to be 1177 m2g-1. In the case of the lignocellulosic material, the specific surface area was determined by means of adsorption of methylene blue, and it was 485 m2g-1 for both. The adsorption capacity of CarBrocQ was compared with that of commercial carbons, and proved to be similar. The adsorption results obtained indicate that broccoli waste can be used to prepare activated carbon with applications in the removal of dyes present in textile effluents.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 673
Author(s):  
Byeong-Hoon Lee ◽  
Hye-Min Lee ◽  
Dong Chul Chung ◽  
Byung-Joo Kim

Kenaf-derived activated carbons (AKC) were prepared by H3PO4 activation for automobile canisters. The microstructural properties of AKC were observed using Raman spectra and X-ray diffraction. The textural properties were studied using N2/77 K adsorption isotherms. Butane working capacity was determined according to the ASTM D5228. From the results, the specific surface area and total pore volume of the AKC was determined to be 1260–1810 m2/g and 0.68–2.77 cm3/g, respectively. As the activation time increased, the butane activity and retentivity of the AKC increased, and were observed to be from 32.34 to 58.81% and from 3.55 to 10.12%, respectively. The mesopore ratio of activated carbon increased with increasing activation time and was observed up to 78% at 973 K. This indicates that butane activity and retentivity could be a function not only of the specific surface area or total pore volume, but also of the mesopore volume fraction in the range of 2.8–3.8 nm and 5.5-6.5 nm of adsorbents, respectively. The AKC exhibit enhanced butane working capacity compared to commercial activated carbon with the high performance of butane working capacity due to its pore structure having a high mesopore ratio.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hoang Thu Ha ◽  
Pham Tuan Phong ◽  
Tran Dinh Minh

This work reveals the As(V) adsorption behaviors onto iron oxide (Fe3O4) nanoparticles modified activated carbon (AC), originally developed from biochar (BC), as a green adsorbent denoted by FAC. Since FAC has abundant surface functional groups and a desired porous structure that is favorable for the removal of As(V) in contaminated water, FAC has greatly enhanced the As(V) adsorption capacity of the original BC. Various methods were employed to characterize the FAC characteristics and adsorption mechanism, including pHpzc determination, BET specific surface area, elemental analysis (EA), and scanning electron microscopy (SEM). Results show that the AC surface was successfully modified by iron oxide nanoparticles, enhancing the porosity and specific surface area of original adsorbent. Batch adsorption tests indicated a well-fitted Langmuir model and pseudo-second-order model for As(V) adsorption. Additionally, the highest adsorption capacity (Qmax = 32.57 mg/g) by FAC was higher than previously reported literature reviews. Until now, no article was conducted to research the effect of carbon surface chemistry and texture on As removal from waters. It is required to obtain a rational view of optimal conditions to remove As from contaminated water.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shijie Li ◽  
Tao Xing ◽  
Yilin Wang ◽  
Pengwei Lu ◽  
Weixue Kong ◽  
...  

In order to achieve the purpose of regulating the pore structure characteristics of activated carbon by adjusting the experimental parameters, the effects of carbonization temperature, carbonization time, pre-activation temperature, pre-activation time and impregnation time on the pore structure of sargassum-based activated carbon (SAC) are studied by orthogonal experiment. The gravimetric capacitance of SAC and the relationship between the gravimetric capacitance and specific surface area are also studied. The results show that the SACs prepared at all experimental conditions have developed pore structure and huge specific surface area, reaching 3,122 m2/g. The pore size of SAC is almost all within 6 nm, in which the micropores are mainly concentrated in 0.4–0.8 nm, the mesopores are mainly concentrated in 2–4 nm, and the number of micropores is significantly higher than that of mesopores. During the preparation of SAC, the effect of carbonization temperature on the specific surface area and specific pore volume of SAC is very significant. The effect of carbonization time on the specific surface area of SAC is significant, but the effect on specific pore volume can be ignored. The effects of pre-activation temperature, pre-activation time, and impregnation time on specific surface area and specific pore volume of SAC can be ignored. In addition, SACs show good gravimetric capacitance performance as electrode material for supercapacitors, which can significantly increase the capacitance of supercapacitors and thus broaden their applications. The gravimetric capacitance and specific surface area of SACs show a good linear relationship when the activated carbons have similar material properties and pore size distribution.


2021 ◽  
Author(s):  
Xiaoxia Ren ◽  
Changming Zhang ◽  
Lifang Kou ◽  
Rongxian Wang ◽  
Yaqi Wang ◽  
...  

Abstract Activated carbon spheres with high specific surface area and hierarcal porous texture were prepared from polystyrene-based macroreticular resin spheres by air pre-oxidization and steam activation. The as-prepared carbon spheres had a specific surface area of 1274.95 m2 g− 1, total pore volume of 1.09 cm3 g− 1 and micropore volume of 0.47 cm3 g− 1. Moreover, these carbon spheres showed a hierarcal porous texture composed of ultrafine micropores (0.5-1 nm), micropores (1–2 nm), mesopores (10–50 nm) and macropores (50–100 nm). A CO2 adsorption capacity of 2.82 mmol g− 1 for carbon spheres can be obtained at 30 ℃ and 1 atm. Further, after introducing nitrogen-containing functional groups by gaseous ammonia at 600 ℃, these carbon spheres exhibited a high CO2 adsorption capacity of 3.2 mmol g− 1. In addition, excellent cyclic stability, low hygroscopicity and regenerability temperature suggested these carbon spheres were favorable for CO2 capture.


Sign in / Sign up

Export Citation Format

Share Document