Unsaturated polyester resin modified with poly(organosiloxanes). II. Acoustic emission study on glass-fiber-reinforced resin

2001 ◽  
Vol 81 (13) ◽  
pp. 3280-3289 ◽  
Author(s):  
Val�ria Maria Rosa ◽  
Jozsef Karger-Kocsis ◽  
Maria Isabel Felisberti
Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7307
Author(s):  
Xinjun Fu ◽  
Xiaojun Wang ◽  
Jinjian Zhu ◽  
Minzhuang Chen

Long chopped glass fiber reinforced low-density unsaturated polyester resin (LCGFR-LDUPR) composite materials with light weight and excellent mechanical properties were prepared. It was proved that long chopped glass fiber, which was in length of 15.0 mm and chopped from ER4800-T718 plied yarn, was suitable for the preparation of LCGFR-LDUPR composite samples. With the coexistence of 1.50 parts per hundred of resin (phr) of methyl ethyl ketone peroxide (MEKP-II) and 0.05 phr of cobalt naphthenate, optimal preparation parameters were obtained, which were 20.00 phr of long chopped glass fiber, 2.50 phr of NH4HCO3, at a curing temperature of 58.0 °C. The lowest dosage of activated radicals produced by MEKP-II and cobalt naphthenate enabled the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin to carry out, resulting in a higher curing degree of resin. It was conducive to the formation, diffusion, and distribution of bubbles in uniform size, and also for the constitution of ideal three-dimensional framework of long glass fibers in the cured sample, which resulted in the LCGFR-LDUPR composite sample presenting the apparent density (ρ) of 0.68 ± 0.02 g/cm3, the compression strength (P) of 35.36 ± 0.38 MPa, and the highest specific compressive strength (Ps) of 52.00 ± 0.74 MPa/g·cm3. The work carried out an ideal three-dimensional framework of long chopped glass fiber in the reinforcement to low-density unsaturated polyester resin composite samples. It also presented the proper initiator/accelerator system of the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2211
Author(s):  
S.M. Sapuan ◽  
H.S. Aulia ◽  
R.A. Ilyas ◽  
A. Atiqah ◽  
T.T. Dele-Afolabi ◽  
...  

This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.


2019 ◽  
Vol 24 ◽  
pp. 1-7
Author(s):  
Md. Naimul Islam ◽  
Harun Ar-Rashid ◽  
Farhana Islam ◽  
Nanda Karmaker ◽  
Farjana A. Koly ◽  
...  

E-glass fiber mat reinforced Unsaturated Polyester Resin (UPR)-based composites were fabricated by conventional hand lay-up technique. The fiber content was varied from 5 to 50% by weight. Mechanical properties (tensile and bending) of the fabricated composites were investigated. The tensile strength (TS) of the 5% and 50% fiber reinforced composites was 32 MPa and 72 MPa, respectively. Similarly, tensile modulus, bending strength and bending modulus of the composites were increased by the increase of fiber loading. Interfacial properties of the composites were investigated by scanning electron microscopy (SEM) and the results revealed that the interfacial bond between fiber and matrix was excellent. Keywords: Unsaturated Polyester Resin, Mechanical Properties, E-glass Fibers, Composites, Polymer.


Sign in / Sign up

Export Citation Format

Share Document