scholarly journals Mechanical Properties of Longitudinal Basalt/Woven-Glass-Fiber-reinforced Unsaturated Polyester-Resin Hybrid Composites

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2211
Author(s):  
S.M. Sapuan ◽  
H.S. Aulia ◽  
R.A. Ilyas ◽  
A. Atiqah ◽  
T.T. Dele-Afolabi ◽  
...  

This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.

2019 ◽  
Vol 24 ◽  
pp. 1-7
Author(s):  
Md. Naimul Islam ◽  
Harun Ar-Rashid ◽  
Farhana Islam ◽  
Nanda Karmaker ◽  
Farjana A. Koly ◽  
...  

E-glass fiber mat reinforced Unsaturated Polyester Resin (UPR)-based composites were fabricated by conventional hand lay-up technique. The fiber content was varied from 5 to 50% by weight. Mechanical properties (tensile and bending) of the fabricated composites were investigated. The tensile strength (TS) of the 5% and 50% fiber reinforced composites was 32 MPa and 72 MPa, respectively. Similarly, tensile modulus, bending strength and bending modulus of the composites were increased by the increase of fiber loading. Interfacial properties of the composites were investigated by scanning electron microscopy (SEM) and the results revealed that the interfacial bond between fiber and matrix was excellent. Keywords: Unsaturated Polyester Resin, Mechanical Properties, E-glass Fibers, Composites, Polymer.


2018 ◽  
Author(s):  
◽  
Saad Ramadhan Ahmed

Selecting materials for harsh or extreme environmental conditions can be a challenge. The combination of a harsh environment, large forces over extended periods and the need for lowest possible cost restricts the choice of materials. One potential material is glass fiber reinforced polymers that are widely used in structural systems as load bearing elements, they are relatively low cost and can be tailored to achieve a range of mechanical properties. This investigation presents the preparation of transparent glass fiber reinforced unsaturated polyester composite and the evaluation of its optical and mechanical properties under extreme conditions of temperature. The polyester resin was reinforced with E-glass fibers to manufacture a composite using the hand layup method. Transparency was achieved by modifying the refractive index of the polyester resin to match that of the glass fibers. This investigation also presents the evaluation of glass fiber reinforced unsaturated polyester under quasi-static tension loading and puncture testing using a drop weight at extreme conditions. The results showed that the reinforced composite had a higher fracture stress and chord modulus at all temperatures ranging from +60 [degree]C to -80 [degree]C as compared to the unreinforced polyester matrix. The unreinforced polyester has a higher stiffness at lower temperatures due to reduced polymer chain mobility and higher clamping pressure of the matrix on the glass fiber reinforcement. The damage created by the impact reduces with decreasing temperatures, while the energy absorb remains constant with temperature.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7307
Author(s):  
Xinjun Fu ◽  
Xiaojun Wang ◽  
Jinjian Zhu ◽  
Minzhuang Chen

Long chopped glass fiber reinforced low-density unsaturated polyester resin (LCGFR-LDUPR) composite materials with light weight and excellent mechanical properties were prepared. It was proved that long chopped glass fiber, which was in length of 15.0 mm and chopped from ER4800-T718 plied yarn, was suitable for the preparation of LCGFR-LDUPR composite samples. With the coexistence of 1.50 parts per hundred of resin (phr) of methyl ethyl ketone peroxide (MEKP-II) and 0.05 phr of cobalt naphthenate, optimal preparation parameters were obtained, which were 20.00 phr of long chopped glass fiber, 2.50 phr of NH4HCO3, at a curing temperature of 58.0 °C. The lowest dosage of activated radicals produced by MEKP-II and cobalt naphthenate enabled the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin to carry out, resulting in a higher curing degree of resin. It was conducive to the formation, diffusion, and distribution of bubbles in uniform size, and also for the constitution of ideal three-dimensional framework of long glass fibers in the cured sample, which resulted in the LCGFR-LDUPR composite sample presenting the apparent density (ρ) of 0.68 ± 0.02 g/cm3, the compression strength (P) of 35.36 ± 0.38 MPa, and the highest specific compressive strength (Ps) of 52.00 ± 0.74 MPa/g·cm3. The work carried out an ideal three-dimensional framework of long chopped glass fiber in the reinforcement to low-density unsaturated polyester resin composite samples. It also presented the proper initiator/accelerator system of the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
S. Ragunath ◽  
A. N. Shankar ◽  
K. Meena ◽  
B. Guruprasad ◽  
S. Madhu ◽  
...  

The aim of this research work was to develop the optimal mechanical properties, namely, tensile strength, flexural strength, and impact strength of sisal and glass fiber-reinforced polymer hybrid composites. The sisal, in the form of short fiber, is randomly used as reinforcements for composite materials, which is rich in cellulose, economical, and easily available as well as glass fibers have low cost and have good mechanical properties. In addition, epoxy resin and hardener were for the fabrication of composites by compression molding. The selected materials are fabricated by compression molding in various concentrations on volume basics. The combination of material compositions is obtained from the design of experiments and optimum parameters determined by the Response Surface Methodology (RSM). From the investigation of mechanical properties, the sisal is the most significant factor and verified by ANOVA techniques. The multiobjective optimal levels of factors are obtained by LINGO analysis.


2014 ◽  
Vol 664 ◽  
pp. 8-13
Author(s):  
Jun Tang ◽  
Zhi Hua Wu ◽  
Su Li Xing ◽  
Qing Zheng ◽  
Zheng Shen

In this paper, the mechanical properties of glass fiber reinforced unsaturated polyester resin composite panels were investigated. To understand the effect of chopped strand mats on the mechanical properties of the composites, specimens with certain volume fraction of chopped strand mats manufactured by Vacuum Infusion Molding Process (VIMP) and Hand Lay-up techniques were tested under tensile, bending and impact loadings respectively. It was observed that the chopped strand mats enhanced effectively the mechanical properties of the composite panels manufactured by Hand Lay-up method, while the mechanical properties of the composite panels manufactured by VIMP decreased.


Sign in / Sign up

Export Citation Format

Share Document