Effect of styrene-butadiene-styrene addition on polystyrene/high-density polyethylene blends

2002 ◽  
Vol 83 (14) ◽  
pp. 2967-2975 ◽  
Author(s):  
M�nir Ta?dem??r ◽  
H�seyin Yildirim
2019 ◽  
Vol 33 (6) ◽  
pp. 851-864 ◽  
Author(s):  
Yujiao Shi ◽  
Yingtao Sun ◽  
Zhaobo Wang

Super-hydrophobic and super-oleophilic surface based on high-density polyethylene/styrene–butadiene–styrene block copolymer/waste ground rubber tire powder thermoplastic elastomer (TPE) was successfully prepared while metallographic sandpaper was used as a template. Field emission scanning electron microscope study showed that the molded TPE surface with W7 grade sandpaper possessed the rough microstructure; moreover, the micrometer scale strips resulting from the plastic deformation of TPE matrix could be observed obviously, leading to the increasing surface roughness. Wettability tests showed that the molded TPE surfaces with series sandpapers exhibited the hydrophobic and super-oleophilic properties; moreover, the surface molded with W7 grade sandpaper showed the remarkable super-hydrophobic and super-oleophilic properties.


2017 ◽  
Vol 90 (3) ◽  
pp. 550-561 ◽  
Author(s):  
Prithwiraj Mandal ◽  
Siva Ponnupandian ◽  
Soumyadip Choudhury ◽  
Nikhil K. Singha

ABSTRACT Thiol-ene modification of high vinyl content thermoplastic elastomeric styrene butadiene styrene (SBS) block copolymer (BCP) was carried out using different thiolating agents in toluene at 70 °C. 1H NMR analysis confirmed the participation of vinyl double bond in the thiol-ene modification reaction of SBS. Surface morphology of the block copolymers evaluated by atomic force microscopy analysis showed higher roughness after the thiol-ene reaction. The thiol-modified SBS block copolymer showed better adhesion strength and oil resistance properties than the pristine SBS.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2249
Author(s):  
Bei Chen ◽  
Fuqiang Dong ◽  
Xin Yu ◽  
Changjiang Zheng

In order to solve the problems caused by asphalt diseases and prolong the life cycle of asphalt pavement, many studies on the properties of modified asphalt have been conducted, especially polyurethane (PU) modified asphalt. This study is to replace part of the styrene-butadiene-styrene (SBS) modifier with waste polyurethane (WP), for preparing WP/SBS composite modified asphalt, as well as exploring its properties and microstructure. On this basis, this paper studied the basic performance of WP/SBS composite modified asphalt with a conventional performance test, to analyze the high- and low-temperature rheological properties, permanent deformation resistance and storage stability of WP/SBS composite modified asphalt by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The microstructure of WP/SBS composite modified asphalt was also observed by fluorescence microscope (FM) and Fourier transform infrared spectroscopy (FTIR), as well as the reaction between WP and asphalt. According to the results of this study, WP can replace SBS as a modifier to prepare WP/SBS composite modified asphalt with good low-temperature resistance, whose high-temperature performance will be lower than that of SBS modified asphalt. After comprehensive consideration, 4% SBS content and 15% WPU content (4 S/15 W) are determined as the suitable types of WPU/SBS composite modified asphalt.


Sign in / Sign up

Export Citation Format

Share Document