Preparation of iodine containing quaternary amine methacrylate copolymers and their contact killing antimicrobial properties

2006 ◽  
Vol 102 (2) ◽  
pp. 1038-1044 ◽  
Author(s):  
Supriya Punyani ◽  
Harpal Singh
Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 137
Author(s):  
Xinzhen Fan ◽  
L’Hocine Yahia ◽  
Edward Sacher

Microbes, including bacteria and fungi, easily form stable biofilms on many surfaces. Such biofilms have high resistance to antibiotics, and cause nosocomial and postoperative infections. The antimicrobial and antiviral behaviors of Ag and Cu nanoparticles (NPs) are well known, and possible mechanisms for their actions, such as released ions, reactive oxygen species (ROS), contact killing, the immunostimulatory effect, and others have been proposed. Ag and Cu NPs, and their derivative NPs, have different antimicrobial capacities and cytotoxicities. Factors, such as size, shape and surface treatment, influence their antimicrobial activities. The biomedical application of antimicrobial Ag and Cu NPs involves coating onto substrates, including textiles, polymers, ceramics, and metals. Because Ag and Cu are immiscible, synthetic AgCu nanoalloys have different microstructures, which impact their antimicrobial effects. When mixed, the combination of Ag and Cu NPs act synergistically, offering substantially enhanced antimicrobial behavior. However, when alloyed in Ag–Cu NPs, the antimicrobial behavior is even more enhanced. The reason for this enhancement is unclear. Here, we discuss these results and the possible behavior mechanisms that underlie them.


2020 ◽  
Vol 04 (Supp01) ◽  
pp. 1-6
Author(s):  
Tan Yee Lin

The development of cross infections arising from bacteria transmission on frequently touched facilities has led to an urgent need to promptly disinfect these surfaces, such as hand railings, door handles and elevator buttons. Conventional antimicrobial disinfectants are not ideal as they contribute to the growing antimicrobial resistance crisis. In recent years, the discovery that the wings of insects such as the Clanger cicada (Psaltoda claripennis) possess naturally occurring antimicrobial properties has led to a growing interest to synthetically recreate these surfaces. The use of a physical contact killing mechanism on such nanotextured surfaces is a promising strategy for curbing the proliferation of bacteria, as it is unlikely to contribute to the formation of antimicrobial resistance. Here, I highlight the key advantages of using these antimicrobial nanotextured materials and how they could play a role in safeguarding public health security, especially during the current COVID-19 pandemic.


2018 ◽  
Vol 9 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Mehdihasan I. Shekh ◽  
Dijit M. Patel ◽  
Nirmal N. Patel ◽  
Umesh S. Patel ◽  
Kaushal P. Patel ◽  
...  

2018 ◽  
Vol 124 (5) ◽  
pp. 1032-1046 ◽  
Author(s):  
M. Vincent ◽  
R.E. Duval ◽  
P. Hartemann ◽  
M. Engels-Deutsch

2020 ◽  
Author(s):  
Mojdeh Dinarvand ◽  
Malcolm P. Spain

ABSTRACTMarine natural products (MNPs) have become new strong leads for antimicrobial drug discovery and an effective alternative to control drug resistant infections. Herein we report the bioassay guided fractionation of marine extracts from sponges Lendenfeldia, Ircinia and Dysidea that led us to identify novel compounds with antimicrobial properties. Tertiary amines or quaternary amine salts: anilines 1, benzylamines 2, tertiary amines 3 and 4, and quaternary amine salt 5, along with three known compounds (6-8) were isolated from a crude extract and MeOH eluent marine extracts. The absolute configurations of the new compounds were assigned based on tandem mass spectrometry (MS) analysis. Several of the compounds exhibited potent in-vitro antibacterial activity, especially against Methicillin-resistant Staphylococcus aureus (MRSA) (MICs from 15.6 to 62.5 micro g/mL). Herein, we also, report structure activity relationships of a diverse range of commercial structurally similar compounds. The structure activity relationships (SARs) results clearly demonstrate that modification of the amines through linear chain length, and inclusion of aromatic rings, modifies the observed antimicrobial activity towards different biological activity. Several commercially available compounds, which are structurally related to the molecules we discovered showed broad spectrum antimicrobial activity against different test pathogens with an MIC50 range of 50 to 0.01 microM. The results of cross-referencing antimicrobial activity and cytotoxicity establish that these compounds are promising potential lead molecules, with a favourable therapeutic index for antimicrobial drug development. Additionally, the SAR studies show that simplified analogues of the isolated compounds with increased bioactivity


MRS Advances ◽  
2020 ◽  
Vol 5 (56) ◽  
pp. 2873-2880
Author(s):  
Bryer C. Sousa ◽  
Danielle L. Cote

AbstractThis article contextualizes how the antimicrobial properties and antipathogenic contact killing/inactivating performance of copper cold spray surfaces and coatings and can be extended to the COVID-19 pandemic as a preventative measure. Specifically, literature is reviewed in terms of how copper cold spray coatings can be applied to high-touch surfaces in biomedical as well as healthcare settings to prevent fomite transmission of SARS-CoV-2 through rapidly inactivating SARS-CoV-2 virions after contaminating a surface. The relevant literature on copper-based antipathogenic coatings and surfaces are then detailed. Particular attention is then given to the unique microstructurally-mediated pathway of copper ion diffusion associated with copper cold spray coatings that enable fomite inactivation.


2019 ◽  
Author(s):  
S Štumpf ◽  
G Hostnik ◽  
M Leitgeb ◽  
M Primožič ◽  
U Bren

Sign in / Sign up

Export Citation Format

Share Document