Thermal degradation kinetics and lifetime prediction of poly(aryl ether ketone)s containing 2,6-naphthalene moieties

2009 ◽  
Vol 112 (2) ◽  
pp. 904-909 ◽  
Author(s):  
Si-Jie Liu ◽  
Xiang Hou ◽  
Chi-Guang Fang ◽  
Rong-Tang Ma ◽  
Zhen-Hua Jiang
2007 ◽  
Vol 107 (2) ◽  
pp. 1310-1315 ◽  
Author(s):  
Si-Jie Liu ◽  
Xiang Hou ◽  
Chi-Guang Fang ◽  
Rong-Tang Ma ◽  
Zhen-Hua Jiang

2011 ◽  
Vol 514 (1-2) ◽  
pp. 51-57 ◽  
Author(s):  
Guipeng Yu ◽  
Cheng Liu ◽  
Guanghui Li ◽  
Jinyan Wang ◽  
Xigao Jian

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 657
Author(s):  
Muhammad Helmi Abdul Kudus ◽  
Muhammad Razlan Zakaria ◽  
Mohd Firdaus Omar ◽  
Muhammad Bisyrul Hafi Othman ◽  
Hazizan Md. Akil ◽  
...  

Due to the synergistic effect that occurs between CNTs and alumina, CNT/alumina hybrid-filled epoxy nanocomposites show significant enhancements in tensile properties, flexural properties, and thermal conductivity. This study is an extension of previously reported investigations into CNT/alumina epoxy nanocomposites. A series of epoxy composites with different CNT/alumina loadings were investigated with regard to their thermal-degradation kinetics and lifetime prediction. The thermal-degradation parameters were acquired via thermogravimetric analysis (TGA) in a nitrogen atmosphere. The degradation activation energy was determined using the Flynn–Wall–Ozawa (F-W-O) method for the chosen apparent activation energy. The Ea showed significant differences at α > 0.6, which indicate the role played by the CNT/alumina hybrid filler loading in the degradation behavior. From the calculations, the lifetime prediction at 5% mass loss decreased with an increase in the temperature service of nitrogen. The increase in the CNT/alumina hybrid loading revealed its contribution towards thermal degradation and stability. On average, a higher Ea was attributed to greater loadings of the CNT/alumina hybrid in the composites.


2021 ◽  
Vol 56 (9) ◽  
pp. 5910-5923
Author(s):  
Yanxin Tian ◽  
Yulin He ◽  
Pan Liu ◽  
Hui Zhang ◽  
Qiuying Zheng ◽  
...  

2021 ◽  
pp. 002199832110082
Author(s):  
Azzeddine Gharsallah ◽  
Abdelheq Layachi ◽  
Ali Louaer ◽  
Hamid Satha

This paper reports the effect of lignocellulosic flour and talc powder on the thermal degradation behavior of poly (lactic acid) (PLA) by thermogravimetric analysis (TGA). Lignocellulosic flour was obtained by grinding Opuntia Ficus Indica cladodes. PLA/talc/ Opuntia Ficus Indica flour (OFI-F) biocomposites were prepared by melt processing and characterized using Wide-angle X-ray scattering (WAXS) and Scanning Electron Microscope (SEM). The thermal degradation of neat PLA and its biocomposites can be identified quantitatively by solid-state kinetics models. Thermal degradation results on biocomposites compared to neat PLA show that talc particles at 10 wt % into the PLA matrix have a minor impact on the thermal stability of biocomposites. Loading OFI-F and Talc/OFI-F mixture into the PLA matrix results in a decrease in the maximum degradation temperature, which means that the biocomposites have lower thermal stability. The activation energies (Ea) calculated by the Flynn Wall Ozawa (FWO) and Kissinger Akahira Sunose (KAS) model-free approaches and by model-fitting (Kissinger method and Coats-Redfern method) are in good agreement with one another. In addition, in this work, the degradation mechanism of biocomposites is proposed using Coats-Redfern and Criado methods.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1597
Author(s):  
Iman Jafari ◽  
Mohamadreza Shakiba ◽  
Fatemeh Khosravi ◽  
Seeram Ramakrishna ◽  
Ehsan Abasi ◽  
...  

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 543 ◽  
Author(s):  
Tzu-Yu Peng ◽  
Saiji Shimoe ◽  
Lih-Jyh Fuh ◽  
Chung-Kwei Lin ◽  
Dan-Jae Lin ◽  
...  

Poly(aryl–ether–ketone) materials (PAEKs) are gaining interest in everyday dental practices because of their natural properties. This study aims to analyze the bonding performance of PAEKs to a denture acrylic. Testing materials were pretreated by grinding, sandblasting, and priming prior to polymerization with the denture acrylic. The surface morphologies were observed using a scanning electron microscope and the surface roughness was measured using atomic force microscopy. The shear bond strength (SBS) values were determined after 0 and 2500 thermal cycles. The obtained data were analyzed using a paired samples t-test and Tukey’s honestly significant difference (HSD) test (α = 0.05). The surface characteristics of testing materials after different surface pretreatments showed obvious differences. PAEKs showed lower surface roughness values (0.02–0.03 MPa) than Co-Cr (0.16 MPa) and zirconia (0.22 MPa) after priming and sandblasting treatments (p < 0.05). The SBS values of PAEKs (7.60–8.38 MPa) met the clinical requirements suggested by ISO 10477 (5 MPa). Moreover, PAEKs showed significantly lower SBS reductions (p < 0.05) after thermal cycling fatigue testing compared to Co-Cr and zirconia. Bonding performance is essential for denture materials, and our results demonstrated that PAEKs possess good resistance to thermal cycling fatigue, which is an advantage in clinical applications. The results imply that PAEKs are potential alternative materials for the removable of prosthetic frameworks.


Sign in / Sign up

Export Citation Format

Share Document