Preparation and characterization of high melt strength polypropylene with long chain branched structure by the reactive extrusion process

2011 ◽  
Vol 121 (6) ◽  
pp. 3384-3392 ◽  
Author(s):  
Kun Cao ◽  
Yan Li ◽  
Zhan-Quan Lu ◽  
Shui-Liang Wu ◽  
Zhen-Hua Chen ◽  
...  
2021 ◽  
pp. 009524432110510
Author(s):  
Mousumi De Sarkar ◽  
Nishant Chandel ◽  
Shib Shankar Banerjee ◽  
Subhabrata Saha ◽  
Anil K Bhowmick ◽  
...  

High melt strength polypropylene (HMS-PP) with a long-chain branched structure is a modified form of polypropylene (PP) which has basic properties of regular PP but with superior melt drawability. This paper reports on the development of gel-free HMS-PP from a linear isotactic PP through the introduction of long-chain branching on its backbone via a reactive extrusion process, using dicetyl-peroxydicarbonate (PODIC) alone or in combination with a coagent. The melt strength and the mechanical properties such as impact and flexural strength of PP showed improvements with the modification with PODIC. 5000 ppm by weight of PODIC was found to provide the best balance of properties. The efficacies of zinc diethyldithiocarbamate (ZDC) and tetramethyl thiuram disulphide (TMTD) as coagents in combination with PODIC to augment properties of HMS-PP further were explored. TMTD offered slightly enhanced performance benefits as compared to ZDC at an optimized concentration of 100 ppm by weight. The application potential of HMS-PP in thermoplastic elastomeric blends of HMS-PP with ethylene-propylene-diene monomer (EPDM) rubber at a fixed ratio of 35/65 by weight was also investigated. Structure-property correlations were established between the extent of long-chain branching in the modified PP and the properties of the resultant thermoplastic elastomeric composition.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3531
Author(s):  
María Virginia Candal ◽  
Maryam Safari ◽  
Mercedes Fernández ◽  
Itziar Otaegi ◽  
Agurtzane Múgica ◽  
...  

The recyclability of opaque PET, which contains TiO2 nanoparticles, has not been as well-studied as that of transparent PET. The objective of this work is to recycle post-consumer opaque PET through reactive extrusion with Joncryl. The effect of the reactive extrusion process on the molecular structure and on the thermal/mechanical/rheological properties of recycling post-consumer opaque PET (r-PET) has been analyzed. A 1% w/w Joncryl addition caused a moderate increase in the molecular weight. A moderate increase in chain length could not explain a decrease in the overall crystallization rate. This result is probably due to the presence of branches interrupting the crystallizable sequences in reactive extruded r-PET (REX-r-PET). A rheological investigation performed by SAOS/LAOS/elongational studies detected important structural modifications in REX-r-PET with respect to linear r-PET or a reference virgin PET. REX-r-PET is characterized by a slow relaxation process with enlarged elastic behaviors that are characteristic of a long-chain branched material. The mechanical properties of REX-r-PET increased because of the addition of the chain extender without a significant loss of elongation at the break. The reactive extrusion process is a suitable way to recycle opaque PET into a material with enhanced rheological properties (thanks to the production of a chain extension and long-chain branches) with mechanical properties that are comparable to those of a typical virgin PET sample.


2014 ◽  
Vol 299 (11) ◽  
pp. 1343-1351 ◽  
Author(s):  
Manisha Gupta ◽  
Felixine Siegmund ◽  
Edmund Haberstroh ◽  
Martin Rosenthal ◽  
Dimitri A. Ivanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document