reactive extrusion process
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3531
Author(s):  
María Virginia Candal ◽  
Maryam Safari ◽  
Mercedes Fernández ◽  
Itziar Otaegi ◽  
Agurtzane Múgica ◽  
...  

The recyclability of opaque PET, which contains TiO2 nanoparticles, has not been as well-studied as that of transparent PET. The objective of this work is to recycle post-consumer opaque PET through reactive extrusion with Joncryl. The effect of the reactive extrusion process on the molecular structure and on the thermal/mechanical/rheological properties of recycling post-consumer opaque PET (r-PET) has been analyzed. A 1% w/w Joncryl addition caused a moderate increase in the molecular weight. A moderate increase in chain length could not explain a decrease in the overall crystallization rate. This result is probably due to the presence of branches interrupting the crystallizable sequences in reactive extruded r-PET (REX-r-PET). A rheological investigation performed by SAOS/LAOS/elongational studies detected important structural modifications in REX-r-PET with respect to linear r-PET or a reference virgin PET. REX-r-PET is characterized by a slow relaxation process with enlarged elastic behaviors that are characteristic of a long-chain branched material. The mechanical properties of REX-r-PET increased because of the addition of the chain extender without a significant loss of elongation at the break. The reactive extrusion process is a suitable way to recycle opaque PET into a material with enhanced rheological properties (thanks to the production of a chain extension and long-chain branches) with mechanical properties that are comparable to those of a typical virgin PET sample.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2475
Author(s):  
Elena Torres ◽  
Aide Gaona ◽  
Nadia García-Bosch ◽  
Miguel Muñoz ◽  
Vicent Fombuena ◽  
...  

An eco-friendly strategy for the modification of polylactic acid (PLA) surface properties, using a solvent-free process, is reported. Reactive extrusion (REX) allowed the formation of new covalent bonds between functional molecules and the PLA polymeric matrix, enhancing its mechanical properties and modifying surface hydrophobicity. To this end, the PLA backbone was modified using two alkoxysilanes, phenyltriethoxysilane and N-octyltriethoxysilane. The reactive extrusion process was carried out under mild conditions, using melting temperatures between 150 and 180 °C, 300 rpm as screw speed, and a feeding rate of 3 kg·h−1. To complete the study, flat tapes of neat and functionalized PLA were obtained through monofilament melt extrusion to quantify the enhancement of mechanical properties and hydrophobicity. The results verified that PLA modified with 3 wt% of N-octyltriethoxysilane improves mechanical and thermal properties, reaching Young’s modulus values of 4.8 GPa, and PLA hydrophobic behavior, with values of water contact angle shifting from 68.6° to 82.2°.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1523
Author(s):  
Jacek Andrzejewski ◽  
Michał Nowakowski

The presented study focuses on the development of flax fiber (FF) reinforced composites prepared with the use of poly(lactic acid)/poly(butylene adipate-co-terephthalate)—PLA/PBAT blend system. This type of modification was aimed to increase impact properties of PLA-based composites, which are usually characterized by high brittleness. The PLA/PBAT blends preparation was carried out using melt blending technique, while part of the samples was prepared by reactive extrusion process with the addition of chain extender (CE) in the form of epoxy-functionalized oligomer. The properties of unreinforced blends was evaluated using injection molded samples. The composite samples were prepared by compression molding technique, while flax fibers reinforcement was in the form of plain fabric. The properties of the laminated sheets were investigated during mechanical test measurements (tensile, flexural, impact). Differential scanning calorimetry (DSC) analysis was used to determine the thermal properties, while dynamic mechanical thermal analysis (DMTA) and heat deflection temperature (HDT) measurements were conducted in order to measure the thermomechanical properties. Research procedure was supplemented with structure evaluation using scanning electron microscopy (SEM) analysis. The comparative study reveals that the properties of PLA/PBAT-based composites were more favorable, especially in the context of impact resistance improvement. However, for CE modified samples also the modulus and strength was improved. Structural observations after the impact tests confirmed the presence of the plastic deformation of PLA/PBAT matrix, which confirmed the favorable properties of the developed materials. The use of PBAT phase as the impact modifier strongly reduced the PLA brittleness, while the reactive extrusion process improves the fiber-matrix interactions leading to higher stiffness and strength.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Tang Wen-Dong ◽  
He Guang-Jian ◽  
Huang Wei-Tao ◽  
Zou Xin-Liang ◽  
Cao Xian-Wu ◽  
...  

The crystallization rate of PLA in PLA/PP blends increased after reactive compatibilization during a reactive extrusion process.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2798
Author(s):  
Steffen Ulitzsch ◽  
Tim Bäuerle ◽  
Thomas Chassé ◽  
Günter Lorenz ◽  
Andreas Kandelbauer

Thermoplastic polymers like ethylene-octene copolymer (EOC) may be grafted with silanes via reactive extrusion to enable subsequent crosslinking for advanced biomaterials manufacture. However, this reactive extrusion process is difficult to control and it is still challenging to reproducibly arrive at well-defined products. Moreover, high grafting degrees require a considerable excess of grafting reagent. A large proportion of the silane passes through the process without reacting and needs to be removed at great expense by subsequent purification. This results in unnecessarily high consumption of chemicals and a rather resource-inefficient process. It is thus desired to be able to define desired grafting degrees with optimum grafting efficiency by means of suitable process control. In this study, the continuous grafting of vinyltrimethoxysilane (VTMS) on ethylene-octene copolymer (EOC) via reactive extrusion was investigated. Successful grafting was verified and quantified by 1H-NMR spectroscopy. The effects of five process parameters and their synergistic interactions on grafting degree and grafting efficiency were determined using a face-centered experimental design (FCD). Response surface methodology (RSM) was applied to derive a causal process model and define process windows yielding arbitrary grafting degrees between <2 and >5% at a minimum waste of grafting agent. It was found that the reactive extrusion process was strongly influenced by several second-order interaction effects making this process difficult to control. Grafting efficiencies between 75 and 80% can be realized as long as grafting degrees <2% are admitted.


2020 ◽  
Vol 35 (5) ◽  
pp. 422-428
Author(s):  
F. Berzin ◽  
C. David ◽  
B. Vergnes

Abstract Despite its complexity, reactive extrusion is continuously developing for the production of new and performing materials. Due to the strong coupling between flow, rheology and chemistry, optimizing this process for a given reaction remains a difficult task. Moreover, the scale-up from the laboratory to the production scale is another crucial question, which cannot be solved by conventional techniques. In this paper, we show how the use of numerical modeling may help answer these complex questions by providing realistic solutions, rapidly and without excessive costs. The example of a transesterification reaction was chosen because this reaction has been carefully characterized in previous studies. The reaction kinetics and the kinetic constants are well known and the modeling of this reactive extrusion process has proved to be realistic and accurate.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2021
Author(s):  
Merve Aksit ◽  
Sebastian Gröschel ◽  
Ute Kuhn ◽  
Alper Aksit ◽  
Klaus Kreger ◽  
...  

Due to their appealing properties such as high-temperature dimensional stability, chemical resistance, compressive strength and recyclability, new-generation foams based on engineering thermoplastics such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) have been gaining significant attention. Achieving low-density foams without sacrificing the mechanical properties is of vital importance for applications in the field of transportation and construction, where sufficient compressive strength is desired. In contrast to numerous research studies on PET foams, only a limited number of studies on PBT foams and in particular, on extruded PBT foams are known. Here we present a novel route to extruded PBT foams with densities as low as 80 kg/m3 and simultaneously with improved compressive properties manufactured by a tandem reactive-extrusion process. Improved rheological properties and therefore process stability were achieved using two selected 1,3,5-benzene-trisamides (BTA1 and BTA2), which are able to form supramolecular nanofibers in the PBT melt upon cooling. With only 0.08 wt % of BTA1 and 0.02 wt % of BTA2 the normalized compressive strength was increased by 28% and 15%, respectively. This improvement is assigned to the intrinsic reinforcing effect of BTA fibers in the cell walls and struts.


Sign in / Sign up

Export Citation Format

Share Document