Development of vibration damping materials based on butyl rubber: A study of the phase equilibrium, rheological, and dynamic properties of compositions

2020 ◽  
pp. 50196
Author(s):  
Konstantin V. Pochivalov ◽  
Alexander N. Shilov ◽  
Tatyana N. Lebedeva ◽  
Anna N. Ilyasova ◽  
Roman Yu. Golovanov ◽  
...  
1995 ◽  
Author(s):  
Shoko Yoshikawa ◽  
R. Meyer ◽  
J. Witham ◽  
S. Y. Agadda ◽  
G. Lesieutre

2008 ◽  
Vol 47-50 ◽  
pp. 817-820 ◽  
Author(s):  
R.L. Dai ◽  
W.H. Liao

It has been found that the composites of carbon nanotubes (CNTs) and epoxy resin could greatly enhance damping ability while the stiffness is kept high. In this paper, carbon nanotube enhanced epoxy resin is fabricated. A testing apparatus for obtaining composite dynamic properties is set up. In particular, the loss factors are measured. Experimental results show that CNT additive can provide the composite with several times higher damping as compared with pure epoxy. A finite element model is built to simulate the composite damping. CNT diameter and segment length are investigated using the developed model. Results show that composite damping is insensitive to CNT segment length while the effect of CNT diameter on composite damping is significant.


2012 ◽  
Vol 538-541 ◽  
pp. 2298-2303
Author(s):  
Shi Kai Luo ◽  
Guo Fang Ding ◽  
Jing Li Li ◽  
Yan Song Sha ◽  
Qing Min Cheng ◽  
...  

In this paper, we prepared foaming silicon rubber (PVMQ) /isobutylene-isoprene rubber (IIR) composites with chemical foaming technology. The DMA tests results showed that these foaming materials have effective damping characteristics in a wide temperature range. With the special vibrator, we found that the PVMQ/IIR foams that we prepared were the damping materials which has wide frequency domain, because they can keep high damping ratio in a wide frequency domain. When the preloading was between 1.0 mm and 1.7 mm, the structural damping did not change obviously. According to tests, we found that the damping ratio of these foams was fit to the simple equation .


Author(s):  
Bhaskar Ale ◽  
Carl-Ernst Rousseau

Hollow particulate composites are lightweight, have high compressive strength, are low moisture absorbent, have high damping materials, and are used extensively in aerospace, marine applications, and in the manufacture of sandwich composites core elements. The high performance of these materials is achieved by adding high strength hollow glass particulates (microballoons) to an epoxy matrix, forming epoxy-syntactic foams. The present study focuses on the effect of volume fraction and microballoon size on the ultrasonic and dynamic properties of Epoxy Syntactic Foams. Ultrasonic attenuation coefficient from an experiment is compared with a previously developed theoretical model for low volume fractions that takes into account attenuation loss due to scattering and absorption. The guidelines of ASTM Standard E 664-93 are used to compute the apparent attenuation. Quasi-static compressive tests were also conducted to fully characterize the material. Both quasi-static and dynamic properties, as well as coefficients of attenuation and ultrasonic velocities are found to be strongly dependent upon the volume fraction and size of the microballoons.


2020 ◽  
Vol 3 (2) ◽  
pp. 36-45 ◽  
Author(s):  
O. Tarasova ◽  
Yu. Yurkin ◽  
A. Toroschin

this work is devoted to the problem of developing vibration-damping polymer materials with high damping properties in a wide temperature range. The study of the effect of modifying additives on the strength, damping, adhesive and cohesive properties of a butyl rubber composite is the aim of this work. The task is to identify the actual temperature, frequency, dynamic and mechanical characteristics of a composite material based on butyl rubber depending on the type and concentration of resins. The key methods for studying this problem is the dynamic mechanical analysis method, aimed at obtaining information about changes in the dynamic properties of polymer materials (bond strength with metal when peeling samples of composites, determining the flow resistance of samples, determining the migration of plasticizer). Due to the established experimental dependences, it was found that the addition of resins (3% by weight) in the composition based on butyl rubber leads to an increase in the damping properties of composite materials, and an increase to (4.25% by weight) leads to their decrease. It was established that the obtained filled mixtures with a high damping peak and good adhesive and strength properties are mixtures with the addition of alkyl phenol-formaldehyde resins.


2016 ◽  
Vol 136 ◽  
pp. 460-480 ◽  
Author(s):  
X.Q. Zhou ◽  
D.Y. Yu ◽  
X.Y. Shao ◽  
S.Q. Zhang ◽  
S. Wang

1995 ◽  
Vol 98 (6) ◽  
pp. 3025-3025
Author(s):  
William B. Cushman ◽  
Gerald B. Thomas

Sign in / Sign up

Export Citation Format

Share Document