scholarly journals A dormant resource for genome size estimation in ferns: C‐value inference of the Ophioglossaceae using herbarium specimen spores

Author(s):  
Li‐Yaung Kuo ◽  
Sheng Kai Tang ◽  
Tzu‐Tong Kao ◽  
Atsushi Ebihara ◽  
Susan Fawcett ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 563
Author(s):  
Monika Rewers ◽  
Iwona Jedrzejczyk ◽  
Agnieszka Rewicz ◽  
Anna Jakubska-Busse

Orchidaceae is one of the largest and the most widespread plant families with many species threatened with extinction. However, only about 1.5% of orchids’ genome sizes have been known so far. The aim of this study was to estimate the genome size of 15 species and one infraspecific taxon of endangered and protected orchids growing wild in Poland to assess their variability and develop additional criterion useful in orchid species identification and characterization. Flow cytometric genome size estimation revealed that investigated orchid species possessed intermediate, large, and very large genomes. The smallest 2C DNA content possessed Liparis loeselii (14.15 pg), while the largest Cypripedium calceolus (82.10 pg). It was confirmed that the genome size is characteristic to the subfamily. Additionally, for four species Epipactis albensis, Ophrys insectifera, Orchis mascula, Orchis militaris and one infraspecific taxon, Epipactis purpurata f. chlorophylla the 2C DNA content has been estimated for the first time. Genome size estimation by flow cytometry proved to be a useful auxiliary method for quick orchid species identification and characterization.



1994 ◽  
Vol 42 (11) ◽  
pp. 1413-1416 ◽  
Author(s):  
S L Erlandsen ◽  
E M Rasch

We investigated direct measurement of the DNA content of the parasitic intestinal flagellate Giardia lamblia through quantitation by Feulgen microspectrophotometry and also by visualization of Feulgen-stained DNA chromosomes within dividing cells by laser scanning confocal microscopy. Individual trophozoites of Giardia (binucleate) contained 0.144 +/- 0.018 pg of DNA/cell or 0.072 pg DNA/nucleus. Giardia lamblia cysts (quadranucleate) contained 0.313 +/- 0.003 pg DNA or 0.078 pg DNA/nucleus. The genome size (C) value per nucleus ranged between 6.5-7.1 x 10(7) BP for trophozoites and cysts, respectively. Confocal microscopic examination of Giardia trophozoites undergoing binary fission revealed five chromosome-like bodies within each nucleus. Further information about genome size and DNA content within different Giardia species may help to clarify the pivotal role of these primitive eukaryotic cells in evolutionary development.



2014 ◽  
Vol 92 (10) ◽  
pp. 847-851 ◽  
Author(s):  
Kelly L. Mulligan ◽  
Terra C. Hiebert ◽  
Nicholas W. Jeffery ◽  
T. Ryan Gregory

Ribbon worms (phylum Nemertea) are among several animal groups that have been overlooked in past studies of genome-size diversity. Here, we report genome-size estimates for eight species of nemerteans, including representatives of the major lineages in the phylum. Genome sizes in these species ranged more than fivefold, and there was some indication of a positive relationship with body size. Somatic endopolyploidy also appears to be common in these animals. Importantly, this study demonstrates that both of the most common methods of genome-size estimation (flow cytometry and Feulgen image analysis densitometry) can be used to assess genome size in ribbon worms, thereby facilitating additional efforts to investigate patterns of variability in nuclear DNA content in this phylum.



2021 ◽  
Author(s):  
Jani Angel J. Raymond ◽  
Mudagandur Shashi Shekhar ◽  
Vinaya Kumar Katneni ◽  
Ashok Kumar Jangham ◽  
Sudheesh Kommu Prabhudas ◽  
...  


Author(s):  
Zhixiang Liu ◽  
◽  
Shuai Guo ◽  
Jiang Xu ◽  
Yujun Zhang ◽  
...  


2021 ◽  
Vol 12 ◽  
Author(s):  
Lu Zhao ◽  
Hang Wang ◽  
Ping Li ◽  
Kuo Sun ◽  
De-Long Guan ◽  
...  

Sphingonotus Fieber, 1852 (Orthoptera: Acrididae), is a grasshopper genus comprising approximately 170 species, all of which prefer dry environments such as deserts, steppes, and stony benchlands. In this study, we aimed to examine the adaptation of grasshopper species to arid environments. The genome size of Sphingonotus tsinlingensis was estimated using flow cytometry, and the first high-quality full-length transcriptome of this species was produced. The genome size of S. tsinlingensis is approximately 12.8 Gb. Based on 146.98 Gb of PacBio sequencing data, 221.47 Mb full-length transcripts were assembled. Among these, 88,693 non-redundant isoforms were identified with an N50 value of 2,726 bp, which was markedly longer than previous grasshopper transcriptome assemblies. In total, 48,502 protein-coding sequences were identified, and 37,569 were annotated using public gene function databases. Moreover, 36,488 simple tandem repeats, 12,765 long non-coding RNAs, and 414 transcription factors were identified. According to gene functions, 61 cytochrome P450 (CYP450) and 66 heat shock protein (HSP) genes, which may be associated with drought adaptation of S. tsinlingensis, were identified. We compared the transcriptomes of S. tsinlingensis and two other grasshopper species which were less tolerant to drought, namely Mongolotettix japonicus and Gomphocerus licenti. We observed the expression of CYP450 and HSP genes in S. tsinlingensis were higher. We produced the first full-length transcriptome of a Sphingonotus species that has an ultra-large genome. The assembly characteristics were better than those of all known grasshopper transcriptomes. This full-length transcriptome may thus be used to understand the genetic background and evolution of grasshoppers.



Phytotaxa ◽  
2019 ◽  
Vol 402 (1) ◽  
pp. 29
Author(s):  
JAN PONERT ◽  
ZUZANA CHUMOVÁ ◽  
TEREZIE MANDÁKOVÁ ◽  
PAVEL TRÁVNÍČEK

Acianthera sudae is newly described based on cultivated material from Brazil. It belongs to section Cryptophoranthae and differs from all others in this group by the larger flowers and sepals fused apically for more than half length, and a green-brown abaxial side of sepals with purple dots. Chromosome number (2n = 40) and genome size estimation (1C-value = 1.18 pg) is provided and its phylogenetic placement under the genus is supported with reconstruction of a molecular phylogeny using nuclear ribosomal ITS.



2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yan Cheng ◽  
Pan Yang ◽  
Lihua Zhao ◽  
S. V. G. N. Priyadarshani ◽  
Qiao Zhou ◽  
...  

Abstract Background Soil salinization and alkalization are among the major agricultural threats that affect crop productivity worldwide, which are increasing day by day with an alarming rate. In recent years, several halophytes have been investigated for their utilization in soil remediation and to decipher the mechanism of salt-tolerance in these high salt tolerant genetic repositories. Suaeda salsa is an annual halophytic herb in the family Amaranthaceae, displaying high salt and alkali-resistance and having nutritive value. However, the fundamental biological characteristics of this valuable plant remain to be elucidated until today. Results In this study, we observed the morphology and development of Suaeda salsa, including seed morphology, seed germination, plant morphology, and flower development. Using microscopy, we observed the male and female gametophyte developments of Suaeda salsa. Also, chromosome behaviour during the meiosis of male gametophyte was studied. Eventually, the genome size of Suaeda salsa was estimated through flow cytometry using Arabidopsis as reference. Conclusions Our findings suggest that the male and female gametophyte developments of Suaeda salsa are similar to those of the model plant Arabidopsis, and the diploid Suaeda salsa contains nine pairs of chromosomes. The findings also indicate that the haploid genome of Suaeda salsa is approximately 437.5 MB. The observations and results discussed in this study will provide an insight into future research on Suaeda salsa.



Sign in / Sign up

Export Citation Format

Share Document