A country's response to tackling plastic pollution in aquatic ecosystems: The Chilean way

Author(s):  
M.A. Urbina ◽  
G. Luna‐Jorquera ◽  
M. Thiel ◽  
T. Acuña‐Ruz ◽  
M.A. Amenábar Cristi ◽  
...  
Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. 61-65
Author(s):  
Matthew MacLeod ◽  
Hans Peter H. Arp ◽  
Mine B. Tekman ◽  
Annika Jahnke

Plastic pollution accumulating in an area of the environment is considered “poorly reversible” if natural mineralization processes occurring there are slow and engineered remediation solutions are improbable. Should negative outcomes in these areas arise as a consequence of plastic pollution, they will be practically irreversible. Potential impacts from poorly reversible plastic pollution include changes to carbon and nutrient cycles; habitat changes within soils, sediments, and aquatic ecosystems; co-occurring biological impacts on endangered or keystone species; ecotoxicity; and related societal impacts. The rational response to the global threat posed by accumulating and poorly reversible plastic pollution is to rapidly reduce plastic emissions through reductions in consumption of virgin plastic materials, along with internationally coordinated strategies for waste management.


Author(s):  
Lakshika Dissanayake ◽  
Lahiru N. Jayakody

Polyethylene terephthalate (PET) is globally the largest produced aromatic polyester with an annual production exceeding 50 million metric tons. PET can be mechanically and chemically recycled; however, the extra costs in chemical recycling are not justified when converting PET back to the original polymer, which leads to less than 30% of PET produced annually to be recycled. Hence, waste PET massively contributes to plastic pollution and damaging the terrestrial and aquatic ecosystems. The global energy and environmental concerns with PET highlight a clear need for technologies in PET “upcycling,” the creation of higher-value products from reclaimed PET. Several microbes that degrade PET and corresponding PET hydrolase enzymes have been successfully identified. The characterization and engineering of these enzymes to selectively depolymerize PET into original monomers such as terephthalic acid and ethylene glycol have been successful. Synthetic microbiology and metabolic engineering approaches enable the development of efficient microbial cell factories to convert PET-derived monomers into value-added products. In this mini-review, we present the recent progress of engineering microbes to produce higher-value chemical building blocks from waste PET using a wholly biological and a hybrid chemocatalytic–biological strategy. We also highlight the potent metabolic pathways to bio-upcycle PET into high-value biotransformed molecules. The new synthetic microbes will help establish the circular materials economy, alleviate the adverse energy and environmental impacts of PET, and provide market incentives for PET reclamation.


2020 ◽  
Author(s):  
Jasper Roebroek ◽  
Shaun Harrigan ◽  
Tim van Emmerik

<p>Plastic pollution of aquatic ecosystems is an emerging environmental risk. Land-based plastics are considered the main source of plastic litter in the world’s oceans. Quantifying the emission from rivers into the oceans is crucial to optimize prevention, mitigation and cleanup strategies. Although several studies have focused on estimating annual plastic emission based on average hydrology, the role of extreme events remains underexplored. Recent work has demonstrated that floods can mobilize additional plastics. For example, the 2015/2016 UK floods resulted in a 70% decrease of microplastic sediments in several catchments. In this project, the use of the Global Flood Awareness System (GloFAS) flood forecasting system to assess additional mobilization of plastic pollution will be explored.</p>


Author(s):  
Y. M. Mohammed ◽  
M. Hadizat ◽  
M. A. Umar ◽  
Y. Ibrahim ◽  
H. Mohammed ◽  
...  

Plastic pollution in aquatic ecosystems is a growing environmental concern, as it has the potential to harm ecology, imperil aquatic organisms and cost ecological damage. Although rivers and other freshwater environments are known to play an important role in carrying land-based plastic trash to the world's seas, riverine ecosystems are also directly impacted by plastic pollution. A detailed understanding of the origin, movement, fate, and effects of riverine plastic waste is critical for better quantifying worldwide plastic pollution transport and effectively reducing sources and dangers. In this review, we emphasize the current scientific state of plastic debris in rivers, as well as the existing knowledge gaps, providing a basic overview of plastics and the types of polymers commonly found in rivers and the threat they bring to aquatic ecosystems. We also go through the origins and fates of riverine plastics, as well as the mechanisms and factors that affect plastic debris transit and spatiotemporal variation. We give an overview of riverine plastic transport monitoring and modeling activities, as well as examples of typical values from throughout the world. Finally, we discuss what the future holds for riverine plastic research.


Author(s):  
Cem Çevik ◽  
Ahmet Erkan Kıdeyş ◽  
Ülkü Nihan Tavşanoğlu ◽  
Gökben Başaran Kankılıç ◽  
Sedat Gündoğdu

2021 ◽  
Vol 13 (17) ◽  
pp. 9963
Author(s):  
Rakesh Kumar ◽  
Anurag Verma ◽  
Arkajyoti Shome ◽  
Rama Sinha ◽  
Srishti Sinha ◽  
...  

Plastic pollution is ubiquitous in terrestrial and aquatic ecosystems. Plastic waste exposed to the environment creates problems and is of significant concern for all life forms. Plastic production and accumulation in the natural environment are occurring at an unprecedented rate due to indiscriminate use, inadequate recycling, and deposits in landfills. In 2019, the global production of plastic was at 370 million tons, with only 9% of it being recycled, 12% being incinerated, and the remaining left in the environment or landfills. The leakage of plastic wastes into terrestrial and aquatic ecosystems is occurring at an unprecedented rate. The management of plastic waste is a challenging problem for researchers, policymakers, citizens, and other stakeholders. Therefore, here, we summarize the current understanding and concerns of plastics pollution (microplastics or nanoplastics) on natural ecosystems. The overall goal of this review is to provide background assessment on the adverse effects of plastic pollution on natural ecosystems; interlink the management of plastic pollution with sustainable development goals; address the policy initiatives under transdisciplinary approaches through life cycle assessment, circular economy, and sustainability; identify the knowledge gaps; and provide current policy recommendations. Plastic waste management through community involvement and socio-economic inputs in different countries are presented and discussed. Plastic ban policies and public awareness are likely the major mitigation interventions. The need for life cycle assessment and circularity to assess the potential environmental impacts and resources used throughout a plastic product’s life span is emphasized. Innovations are needed to reduce, reuse, recycle, and recover plastics and find eco-friendly replacements for plastics. Empowering and educating communities and citizens to act collectively to minimize plastic pollution and use alternative options for plastics must be promoted and enforced. Plastic pollution is a global concern that must be addressed collectively with the utmost priority.


Author(s):  
Van-Tai Nguyen ◽  
Thi-Phuong-Dung Le ◽  
Thanh-Son Dao

Plastic pollution has become one of the most serious environmental issues worldwide. Plastics can contain high amount of additives (e.g., phthalate, bisphenol A, trace metals), and they could be leached out of plastics, enter the aquatic environment and cause toxic effects to aquatic organisms (including microcrustacean). In this study, we investigated chronic effects of plastic leachates from two popular plastic materials (garbage bag and disposable raincoat) on the survival, maturation and reproduction of the microcrustcean Daphnia magna. The results showed that, the plastic leachates from the two materials at the concentration up to 1000 mg/l did not cause negative effect on survival of D. magna. However, exposed to the leachates from the garbage bag (at the concentrations of 10, 100 and 1000 mg/l) and from the disposable raincoat (at the concentration of 10 mg/l), the animals delayed their maturity ages compared to the control. Besides, the two kinds of leachates at the concentration of 1000 mg/l stimulated the reproduction of D. magna, resulting the increase of 17 – 37% of total offspring compared to the control, during 21 days of experiment. The results of this study contribute to the understanding on the toxicity of popular plastic materials to the microcrustacean, D. magna. Additionally, the plastic usage and emission into the environment should be paid more attention to protect the aquatic ecosystems and human health.


Author(s):  
Irfan Rashid Sofi ◽  
Javid Manzoor ◽  
Rayees Ahmad Bhat ◽  
Rafiya Munvar

Plastic pollution in the environment is currently receiving worldwide attention. Improper dumping of disused or abandoned plastic wastes leads to contamination of the environment. Contamination by bulk plastics and plastic debris is currently the one of the most serious problems in aquatic ecosystems. In particular, small-scale plastic debris such as microplastics and nanoplastics has become a leading contributor to the pollution of marine and freshwater ecosystems. Over 300 million tons of plastic is produced annually, and around 75% of all marine litter is plastic. Plastic litter is widespread in aquatic ecosystems and comes from a variety of sources. The abundance of plastics, combined with their small size and subsequent association with plankton in the water column, allows for direct ingestion by aquatic biota at different trophic levels.


Sign in / Sign up

Export Citation Format

Share Document