Plastic Pollution and the Ecological Impact on the Aquatic Ecosystem

Author(s):  
Irfan Rashid Sofi ◽  
Javid Manzoor ◽  
Rayees Ahmad Bhat ◽  
Rafiya Munvar

Plastic pollution in the environment is currently receiving worldwide attention. Improper dumping of disused or abandoned plastic wastes leads to contamination of the environment. Contamination by bulk plastics and plastic debris is currently the one of the most serious problems in aquatic ecosystems. In particular, small-scale plastic debris such as microplastics and nanoplastics has become a leading contributor to the pollution of marine and freshwater ecosystems. Over 300 million tons of plastic is produced annually, and around 75% of all marine litter is plastic. Plastic litter is widespread in aquatic ecosystems and comes from a variety of sources. The abundance of plastics, combined with their small size and subsequent association with plankton in the water column, allows for direct ingestion by aquatic biota at different trophic levels.

2020 ◽  
Vol 10 (15) ◽  
pp. 5080 ◽  
Author(s):  
Claudia Labianca ◽  
Sabino De Gisi ◽  
Francesco Todaro ◽  
Michele Notarnicola

The study critically analyses the complex situation of the Mar Piccolo of Taranto (South of Italy), considered one of the most polluted marine ecosystems in Europe. In order to investigate possible cause–effect relationships, useful to plan appropriate planning responses or remediation technologies to be adopted, the Driver–Pressure–State–Impact–Response (DPSIR) model was applied. Methodologically, about 100 references have been considered, whose information was organized according to the logical scheme of the DPSIR. The results showed how the Mar Piccolo is the final receptor of pollutants coming from all industrial and agricultural activities, especially due to its natural hydrogeological network conformation. The anthropic activity represents a critical impact on the ecosystem due to the subsequent marine litter. The mobility of contaminants from sediments to the water column showed the potential risk related to the bioaccumulation of organisms from different trophic levels, posing a threat of unacceptable magnitude to human safety. The paper concludes by discussing the actions currently implemented by the authorities in response to the anthropogenic impacts as well as the need for new ones concerning both plans, programs, and remediation interventions. The case study shows how the DPSIR is a useful framework to organize extensive and heterogeneous information about a complex environmental system, such as the one investigated. This preliminary organization of the available data can represent the starting point for the development of a DPSIR-based Environmental Decision Support System (EDSS) with robust cause–effect relationships.


2021 ◽  
Author(s):  
Alexander Christensen ◽  
Matthew Piggott ◽  
Erik van Sebille ◽  
Maarten van Reeuwijk ◽  
Samraat Pawar

Abstract Microbes play a primary role in aquatic ecosystems and biogeochemical cycles. Patchiness is a critical component of these activities, influencing biological productivity, nutrient cycling and dynamics across trophic levels. Incorporating spatial dynamics into microbial models is a long-standing challenge, particularly where small-scale turbulence is involved. Here, we combine a realistic simulation of turbulence with an individual-based microbial model to test the key hypothesis that the coupling of motility and turbulence drives intense microscale patchiness. We find that such patchiness is depth-structured and requires high motility: Near the fluid surface, strong convective turbulence overpowers motility, homogenising motile and non-motile microbes equally. In deeper, thermocline-like conditions, highly motile microbes are up to 1.6-fold more patch-concentrated than non-motile microbes. Our results demonstrate that the delicate balance of turbulence and motility that triggers micro-scale patchiness is not a ubiquitous consequence of motility, and that the intensity of such patchiness in real-world conditions is modest.


Author(s):  
Y. M. Mohammed ◽  
M. Hadizat ◽  
M. A. Umar ◽  
Y. Ibrahim ◽  
H. Mohammed ◽  
...  

Plastic pollution in aquatic ecosystems is a growing environmental concern, as it has the potential to harm ecology, imperil aquatic organisms and cost ecological damage. Although rivers and other freshwater environments are known to play an important role in carrying land-based plastic trash to the world's seas, riverine ecosystems are also directly impacted by plastic pollution. A detailed understanding of the origin, movement, fate, and effects of riverine plastic waste is critical for better quantifying worldwide plastic pollution transport and effectively reducing sources and dangers. In this review, we emphasize the current scientific state of plastic debris in rivers, as well as the existing knowledge gaps, providing a basic overview of plastics and the types of polymers commonly found in rivers and the threat they bring to aquatic ecosystems. We also go through the origins and fates of riverine plastics, as well as the mechanisms and factors that affect plastic debris transit and spatiotemporal variation. We give an overview of riverine plastic transport monitoring and modeling activities, as well as examples of typical values from throughout the world. Finally, we discuss what the future holds for riverine plastic research.


Fisheries ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 61-66 ◽  
Author(s):  
Anatoly Sadchikov

The article describes an improved and approved methodology for assessing the heterotrophic activity of freshwater bacteria using a specific example. Namely, the example of studying the bacterial consumption of organic matter excreted by algae. Utilization of organic substances in water bodies by microorganisms and their oxidation are an important part of the functioning of aquatic ecosystems and water self-purification. This article details innovative modifications to the method based on the use of 14C-labeled organic matter by aquatic organisms. All these methods and techniques have been tested in the study of production and destruction processes in freshwater ecosystems of different trophic levels including mesotrophic, eutrophic and hypertrophic surface ecosystems.


2020 ◽  
Vol 50 (2) ◽  
pp. 133-137
Author(s):  
Ana Luisa Biondi FARES ◽  
Flávia Alessandra da Silva NONATO ◽  
Thaísa Sala MICHELAN

ABSTRACT Invasive species influence the structure and functioning of ecosystems, as they affect native species, significantly decreasing their diversity. Aquatic ecosystems harbor a great biodiversity, and invasive macrophytes significantly affect the native plant communities, causing a cascade effect on other trophic levels. Among invasive macrophytes, Urochloa arrecta is cause for concern in the Neotropics and is found in several regions of Brazil, specially in the southeastern and southern regions. So far the species had been recorded only in the northern state of Amazonas. We report the first record of the species in the state of Pará, in the eastern Brazilian Amazon. We emphasize that identifying sites where this species is invasive is the best strategy to prevent its spread, aiming at the protection and conservation of Amazonian freshwater ecosystems.


2020 ◽  
Vol 3 (2) ◽  
pp. 316
Author(s):  
Gabriel Enrique De-la-Torre ◽  
Diana Carolina Dioses-Salinas ◽  
Sandra Huamantupa-Aybar ◽  
Joseph Davila-Carrasco

Plastic pollution is regarded as one of the major issues from the Anthropocene epoch. Microplastics (<5 mm) are the result of the excessive plastic production and littering, thus becoming widespread in the environment. In this study, the presence and characteristics of microplastics extracted from the gastrointestinal tract of sea urchin Tetrapygus niger was reported. An average abundance of 3.22 ± 0.49 microplastics per individual was found, ranging from 1 to 5. Fibers were the dominant type (75.9%), followed by fragments (24.1%). Regarding color, most of the particles found were blue > red > black > green. These results are in lower magnitude levels than those reported in others species from the same region. However, microplastics could transfer from sea urchins to predators in higher trophic levels, like marine mammals. Prospects for further research was discussed.


2020 ◽  
Vol 24 (20) ◽  
pp. 2341-2355
Author(s):  
Thaipparambil Aneeja ◽  
Sankaran Radhika ◽  
Mohan Neetha ◽  
Gopinathan Anilkumar

One-pot syntheses are a simple, efficient and easy methodology, which are widely used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from imidazolines. The one-pot method is an impressive approach to synthesize organic compounds as it minimizes the reaction time, separation procedures, and ecological impact. Many significant one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran, triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis. This review describes an overview of the one-pot synthesis of imidazolines and covers literature up to 2020.


Author(s):  
Paola Sangiorgio ◽  
Alessandra Verardi ◽  
Salvatore Dimatteo ◽  
Anna Spagnoletta ◽  
Stefania Moliterni ◽  
...  

AbstractThe increase in the world population leads to rising demand and consumption of plastic raw materials; only a small percentage of plastics is recovered and recycled, increasing the quantity of waste released into the environment and losing its economic value. The plastics represent a great opportunity in the circular perspective of their reuse and recycling. Research is moving, on the one hand, to implement sustainable systems for plastic waste management and on the other to find new non-fossil-based plastics such as polyhydroxyalkanoates (PHAs). In this review, we focus our attention on Tenebrio molitor (TM) as a valuable solution for plastic biodegradation and biological recovery of new biopolymers (e.g. PHA) from plastic-producing microorganisms, exploiting its highly diversified gut microbiota. TM’s use for plastic pollution management is controversial. However, TM microbiota is recognised as a source of plastic-degrading microorganisms. TM-based plastic degradation is improved by co-feeding with food loss and waste as a dietary energy source, thus valorising these low-value substrates in a circular economy perspective. TM as a bioreactor is a valid alternative to traditional PHA recovery systems with the advantage of obtaining, in addition to highly pure PHA, protein biomass and rearing waste from which to produce fertilisers, chitin/chitosan, biochar and biodiesel. Finally, we describe the critical aspects of these TM-based approaches, mainly related to TM mass production, eventual food safety problems, possible release of microplastics and lack of dedicated legislation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Sanchez-Vidal ◽  
Miquel Canals ◽  
William P. de Haan ◽  
Javier Romero ◽  
Marta Veny

AbstractThere is strong evidence that the seafloor constitutes a final sink for plastics from land sources. There is also evidence that part of the plastics lying on the shallow seafloor are washed up back to the shoreline. However, little is known on the natural trapping processes leading to such landwards return. Here we investigate microplastics and larger plastic debris within beached seagrass remains including balls (aegagropilae) made of natural aggregates of vegetal fibers intertwined by seawater motion. We found up to 1470 plastic items per kg of plant material, which were mainly composed of negatively buoyant polymer filaments and fibers. Our findings show that seagrass meadows promote plastic debris trapping and aggregation with natural lignocellulosic fibers, which are then ejected and escape the coastal ocean. Our results show how seagrasses, one of the key ecosystems on Earth in terms of provision of goods and services, also counteract marine plastic pollution. In view of our findings, the regression of seagrass meadows in some marine regions acquires a new dimension.


Südosteuropa ◽  
2019 ◽  
Vol 67 (2) ◽  
pp. 175-195
Author(s):  
Petru Negură

Abstract The Centre for the Homeless in Chișinău embodies on a small scale the recent evolution of state policies towards the homeless in Moldova (a post-Soviet state). This institution applies the binary approach of the state, namely the ‘left hand’ and the ‘right hand’, towards marginalised people. On the one hand, the institution provides accommodation, food, and primary social, legal assistance and medical care. On the other hand, the Shelter personnel impose a series of disciplinary constraints over the users. The Shelter also operates a differentiation of the users according to two categories: the ‘recoverable’ and those deemed ‘irrecoverable’ (persons with severe disabilities, people with addictions). The personnel representing the ‘left hand’ (or ‘soft-line’) regularly negotiate with the employees representing the ‘right hand’ (‘hard-line’) of the institution to promote a milder and a more humanistic approach towards the users. This article relies on multi-method research including descriptive statistical analysis with biographical records of 810 subjects, a thematic analysis of in-depth interviews with homeless people (N = 65), people at risk of homelessness (N = 5), professionals (N = 20) and one ethnography of the Shelter.


Sign in / Sign up

Export Citation Format

Share Document