Immunohistochemistry of Kangaroo Rat Hindlimb Muscles

2021 ◽  
Author(s):  
Chanel D. Ross ◽  
Ron A. Meyers
2019 ◽  
Vol 316 (5) ◽  
pp. R584-R593 ◽  
Author(s):  
Sebastien Preau ◽  
Michael Ambler ◽  
Anna Sigurta ◽  
Anna Kleyman ◽  
Alex Dyson ◽  
...  

An impaired capacity of muscle to regenerate after critical illness results in long-term functional disability. We previously described in a long-term rat peritonitis model that gastrocnemius displays near-normal histology whereas soleus demonstrates a necrotizing phenotype. We thus investigated the link between the necrotizing phenotype of critical illness myopathy and proteasome activity in these two limb muscles. We studied male Wistar rats that underwent an intraperitoneal injection of the fungal cell wall constituent zymosan or n-saline as a sham-treated control. Rats ( n = 74) were killed at 2, 7, and 14 days postintervention with gastrocnemius and soleus muscle removed and studied ex vivo. Zymosan-treated animals displayed an initial reduction of body weight but a persistent decrease in mass of both lower hindlimb muscles. Zymosan increased chymotrypsin- and trypsin-like proteasome activities in gastrocnemius at days 2 and 7 but in soleus at day 2 only. Activated caspases-3 and -9, polyubiquitin proteins, and 14-kDa fragments of myofibrillar actin (proteasome substrates) remained persistently increased from day 2 to day 14 in soleus but not in gastrocnemius. These results suggest that a relative proteasome deficiency in soleus is associated with a necrotizing phenotype during long-term critical illness. Rescuing proteasome clearance may offer a potential therapeutic option to prevent long-term functional disability in critically ill patients.


2014 ◽  
Vol 46 (16) ◽  
pp. 571-582 ◽  
Author(s):  
P. Carbonetto ◽  
R. Cheng ◽  
J. P. Gyekis ◽  
C. C. Parker ◽  
D. A. Blizard ◽  
...  

The genes underlying variation in skeletal muscle mass are poorly understood. Although many quantitative trait loci (QTLs) have been mapped in crosses of mouse strains, the limited resolution inherent in these conventional studies has made it difficult to reliably pinpoint the causal genetic variants. The accumulated recombination events in an advanced intercross line (AIL), in which mice from two inbred strains are mated at random for several generations, can improve mapping resolution. We demonstrate these advancements in mapping QTLs for hindlimb muscle weights in an AIL ( n = 832) of the C57BL/6J (B6) and DBA/2J (D2) strains, generations F8–F13. We mapped muscle weight QTLs using the high-density MegaMUGA SNP panel. The QTLs highlight the shared genetic architecture of four hindlimb muscles and suggest that the genetic contributions to muscle variation are substantially different in males and females, at least in the B6D2 lineage. Out of the 15 muscle weight QTLs identified in the AIL, nine overlapped the genomic regions discovered in an earlier B6D2 F2 intercross. Mapping resolution, however, was substantially improved in our study to a median QTL interval of 12.5 Mb. Subsequent sequence analysis of the QTL regions revealed 20 genes with nonsense or potentially damaging missense mutations. Further refinement of the muscle weight QTLs using additional functional information, such as gene expression differences between alleles, will be important for discerning the causal genes.


2002 ◽  
Vol 283 (3) ◽  
pp. C773-C784 ◽  
Author(s):  
Karl Rouger ◽  
Martine Le Cunff ◽  
Marja Steenman ◽  
Marie-Claude Potier ◽  
Nathalie Gibelin ◽  
...  

The mdx mouse is a model for human Duchenne muscular dystrophy (DMD), an X-linked degenerative disease of skeletal muscle tissue characterized by the absence of the dystrophin protein. The mdx mice display a much milder phenotype than DMD patients. After the first week of life when all mdx muscles evolve like muscles of young DMD patients, mdx hindlimb muscles substantially compensate for the lack of dystrophin, whereas mdx diaphragm muscle becomes progressively affected by the disease. We used cDNA microarrays to compare the expression profile of 1,082 genes, previously selected by a subtractive method, in control and mdx hindlimb and diaphragm muscles at 12 time points over the first year of the mouse life. We determined that 1) the dystrophin gene defect induced marked expression remodeling of 112 genes encoding proteins implicated in diverse muscle cell functions and 2) two-thirds of the observed transcriptomal anomalies differed between adult mdx hindlimb and diaphragm muscles. Our results showed that neither mdx diaphram muscle nor mdx hindlimb muscles evolve entirely like the human DMD muscles. This finding should be taken under consideration for the interpretation of future experiments using mdx mice as a model for therapeutic assays.


1971 ◽  
Vol 44 (2) ◽  
pp. 112-118 ◽  
Author(s):  
Jack Vernon ◽  
Paul Herman ◽  
Ernest Peterson

Author(s):  
Kyle B. Spainhower ◽  
Allan K. Metz ◽  
Abdel-Ruhman S. Yusuf ◽  
Lydia E. Johnson ◽  
Judy A. Avey-Arroyo ◽  
...  

1999 ◽  
Vol 111 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Robert S. Staron ◽  
William J. Kraemer ◽  
Robert S. Hikida ◽  
Andy C. Fry ◽  
Jerry D. Murray ◽  
...  

2018 ◽  
Vol 314 (4) ◽  
pp. R563-R573 ◽  
Author(s):  
Mun Aw ◽  
Tamara M. Armstrong ◽  
C. Michele Nawata ◽  
Sarah N. Bodine ◽  
Jeeeun J. Oh ◽  
...  

In general, the mammalian whole body mass-specific metabolic rate correlates positively with maximal urine concentration (Umax) irrespective of whether or not the species have adapted to arid or mesic habitat. Accordingly, we hypothesized that the thick ascending limb (TAL) of a rodent with markedly higher whole body mass-specific metabolism than rat exhibits a substantially higher TAL metabolic rate as estimated by Na+-K+-ATPase activity and Na+-K+-ATPase α1-gene and protein expression. The kangaroo rat inner stripe of the outer medulla exhibits significantly higher mean Na+-K+-ATPase activity (~70%) compared with two rat strains (Sprague-Dawley and Munich-Wistar), extending prior studies showing rat activity exceeds rabbit. Furthermore, higher expression of Na+-K+-ATPase α1-protein (~4- to 6-fold) and mRNA (~13-fold) and higher TAL mitochondrial volume density (~20%) occur in the kangaroo rat compared with both rat strains. Rat TAL Na+-K+-ATPase α1-protein expression is relatively unaffected by body hydration status or, shown previously, by dietary Na+, arguing against confounding effects from two unavoidably dissimilar diets: grain-based diet without water (kangaroo rat) or grain-based diet with water (rat). We conclude that higher TAL Na+-K+-ATPase activity contributes to relationships between whole body mass-specific metabolic rate and high Umax. More vigorous TAL Na+-K+-ATPase activity in kangaroo rat than rat may contribute to its steeper Na+ and urea axial concentration gradients, adding support to a revised model of the urine concentrating mechanism, which hypothesizes a leading role for vigorous active transport of NaCl, rather than countercurrent multiplication, in generating the outer medullary axial osmotic gradient.


1988 ◽  
Vol 11 (11) ◽  
pp. 1123-1132 ◽  
Author(s):  
Roger M. Enoka ◽  
Lucinda L. Rankin ◽  
Michael J. Joyner ◽  
Douglas G. Stuart

Sign in / Sign up

Export Citation Format

Share Document