Water-Soluble Phospholo[3,2-b ]phosphole-P ,P ′-Dioxide-Based Fluorescent Dyes with High Photostability

2018 ◽  
Vol 13 (12) ◽  
pp. 1616-1624 ◽  
Author(s):  
Chenguang Wang ◽  
Aiko Fukazawa ◽  
Yoshiyuki Tanabe ◽  
Naoto Inai ◽  
Daisuke Yokogawa ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sam Wong ◽  
Simone Alidori ◽  
Barbara P. Mello ◽  
Bryan Aristega Almeida ◽  
David Ulmert ◽  
...  

AbstractCellulose nanocrystals (CNC) are linear organic nanomaterials derived from an abundant naturally occurring biopolymer resource. Strategic modification of the primary and secondary hydroxyl groups on the CNC introduces amine and iodine group substitution, respectively. The amine groups (0.285 mmol of amine per gram of functionalized CNC (fCNC)) are further reacted with radiometal loaded-chelates or fluorescent dyes as tracers to evaluate the pharmacokinetic profile of the fCNC in vivo. In this way, these nanoscale macromolecules can be covalently functionalized and yield water-soluble and biocompatible fibrillar nanoplatforms for gene, drug and radionuclide delivery in vivo. Transmission electron microscopy of fCNC reveals a length of 162.4 ± 16.3 nm, diameter of 11.2 ± 1.52 nm and aspect ratio of 16.4 ± 1.94 per particle (mean ± SEM) and is confirmed using atomic force microscopy. Size exclusion chromatography of macromolecular fCNC describes a fibrillar molecular behavior as evidenced by retention times typical of late eluting small molecules and functionalized carbon nanotubes. In vivo, greater than 50% of intravenously injected radiolabeled fCNC is excreted in the urine within 1 h post administration and is consistent with the pharmacological profile observed for other rigid, high aspect ratio macromolecules. Tissue distribution of fCNC shows accumulation in kidneys, liver, and spleen (14.6 ± 6.0; 6.1 ± 2.6; and 7.7 ± 1.4% of the injected activity per gram of tissue, respectively) at 72 h post-administration. Confocal fluorescence microscopy reveals cell-specific accumulation in these target tissue sinks. In summary, our findings suggest that functionalized nanocellulose can be used as a potential drug delivery platform for the kidneys.


2015 ◽  
Vol 112 (8) ◽  
pp. E826-E835 ◽  
Author(s):  
Ian C. Shieh ◽  
Joseph A. Zasadzinski

Contrast in confocal microscopy of phase-separated monolayers at the air–water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid–liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy–Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.


2010 ◽  
Author(s):  
Lav R Khot ◽  
Masoud Salyani ◽  
Roy D Sweeb

2000 ◽  
Vol 113 (21) ◽  
pp. 3805-3814 ◽  
Author(s):  
J. Xu ◽  
D. Ziemnicka ◽  
G.S. Merz ◽  
L. Kotula

Macropinocytosis is an endocytic process that occurs through non-clathrin coated vesicles larger than 0.2 microm in diameter. Although macropinocytic vesicles are readily visualized in cultured cells by the introduction of fluorescent, water-soluble dyes into the culture medium, protein markers associated with this type of vesicles have not yet been well defined. Here, we report that human spectrin SH3 domain binding protein 1, or Hssh3bp1, associates with macropinosomes in NIH 3T3 fibroblasts. Hssh3bp1 macropinosomes are heterogeneous in morphology and size, do not endocytose transferrin and are resistant to brefeldin A treatment. Cytochalasin D, and wortmannin block endocytosis of fluorescent dyes into the Hssh3bp1 macropinosomes and dramatically affect their morphology. Overexpression of Hssh3bp1-green fluorescent protein abolished fusion of vesicles resulting in a decreased endocytosis of fluorescence dyes, thus suggesting a potential regulatory role of Hssh3bp1 in macropinocytosis. In the macropinosomes of NIH 3T3 cells, Hssh3bp1 associates with a 200-kDa protein that crossreacts with a monoclonal antibody to the erythroid alpha-spectrin SH3 domain. Thus macropinosomes in cells may contain a spectrin-like protein.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2923
Author(s):  
Piaopiao Chen ◽  
Iqra Ilyas ◽  
Su He ◽  
Yichen Xing ◽  
Zhigang Jin ◽  
...  

Polymer dots (Pdots) represent newly developed semiconductor polymer nanoparticles and exhibit excellent characteristics as fluorescent probes. To improve the sensitivity and biocompatibility of Pdots ratiometric pH biosensors, we synthesized 3 types of water-soluble Pdots: Pdots-PF, Pdots-PP, and Pdots-PPF by different combinations of fluorescent dyes poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO), poly[(9,9-dioctyl-fluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1′,3}-thiadazole)] (PFBT), and fluorescein isothiocyanate (FITC). We found that Pdots-PPF exhibits optimal performance on pH sensing. PFO and FITC in Pdots-PPF produce pH-insensitive (λ = 439 nm) and pH-sensitive (λ = 517 nm) fluorescence respectively upon a single excitation at 380 nm wavelength, which enables Pdots-PPF ratiometric pH sensing ability. Förster resonance energy transfer (FRET) together with the use of PFBT amplify the FITC signal, which enables Pdots-PPF robust sensitivity to pH. The emission intensity ratio (I517/I439) of Pdots-PPF changes linearly as a function of pH within the range of pH 3.0 to 8.0. Pdots-PPF also possesses desirable reversibility and stability in pH measurement. More importantly, Pdots-PPF was successfully used for cell imaging in Hela cells, exhibiting effective cellular uptake and low cytotoxicity. Our study suggests the promising potential of Pdots-PPF as an in vivo biomarker.


2011 ◽  
Vol 27 (2) ◽  
pp. 211-216 ◽  
Author(s):  
L. R. Khot ◽  
M. Salyani ◽  
R. D. Sweeb

ChemInform ◽  
2011 ◽  
Vol 42 (29) ◽  
pp. no-no
Author(s):  
Yile Fu ◽  
Lanying Wang ◽  
Xianghan Zhang ◽  
Tianqin Lu ◽  
Qianjie Xie ◽  
...  

2020 ◽  
Vol 93 (10) ◽  
pp. 1226-1233
Author(s):  
Shozo Onishi ◽  
Yasutaka Suzuki ◽  
Hikari Ano ◽  
Jun Kawamata

2020 ◽  
Vol 8 (5) ◽  
pp. 631 ◽  
Author(s):  
Nicolás Órdenes-Aenishanslins ◽  
Giovanna Anziani-Ostuni ◽  
Juan Pablo Monrás ◽  
Alejandra Tello ◽  
Denisse Bravo ◽  
...  

In this study, we introduce a biological method for the production of ternary Quantum Dots (QDs): complex nanostructures with tunable optical and structural properties that utilizes post-synthesis modifications through cation exchange. This versatile in-situ cation exchange method being reported for the first time shows great potential for extending the scope of microbial synthesis. By using this bacterial-based method, we easily synthesize and purify CdS, CdSAg, and Ag2S nanocrystals of a size below 15 nm and with variable morphologies that exhibit fluorescence emissions covering a broad spectral range (from 400 to 800 nm). Energy-dispersive X-ray spectroscopy (EDS) results indicate the partial replacement of Cd2+ by Ag+ when AgNO3 concentration is increased. This replacement produces CdSAg ternary QDs hetero-structures with high stability, fluorescence in the NIR-I (700 - 800 nm), and 36.13% quantum yield. Furthermore, this reaction can be extended for the production of soluble Ag2S nanoparticles (NPs) without any traces of Cd. QDs biosynthesized through this cation exchange process display very low toxicity when tested in bacterial or human cell lines. Biosynthesized ternary hetero-structures were used as red fluorescent dyes to label HeLa cells in confocal microscopy studies, which validates its use in bioimaging applications in the near infrared region. In addition, the application of biologically-produced cadmium NPs in solar cells is reported for the first time. The three biosynthesized QDs were successfully used as photosensitizers, where the CdSAg QDs show the best photovoltaic parameters. Altogether, obtained results validate the use of bacterial cells for the controlled production of nanomaterials with properties that allow their application in diverse technologies. We developed a simple biological process for obtaining tunable Quantum Dots (QDs) with different metal compositions through a cation exchange process. Nanoparticles (NPs) are produced in the extracellular space of bacterial cells exposed to cysteine and CdCl2 in a reaction that depends on S2− generation mediated by cysteine desulfhydrase enzymes and uses cellular biomolecules to stabilize the nanoparticle. Using this extracellular approach, water-soluble fluorescent CdS, CdSAg, and Ag2S Quantum Dots with a tunable emission ranging from 400 to 800 nm were generated. This is the first study reporting the use of microorganisms to produce tunable ternary QDs and the first time that a cation exchange process mediated by cells is described. Obtained results validate the use of biological synthesis to produce NPs with new characteristics and opens a completely new research field related to the use of microorganisms to synthesize complex NPs that are difficult to obtain with regular chemical methods.


Sign in / Sign up

Export Citation Format

Share Document