Robust Adaptive Terminal Sliding Mode Synchronized Control for a Class of Non-Autonomous Chaotic Systems

2013 ◽  
Vol 15 (6) ◽  
pp. 1677-1685 ◽  
Author(s):  
Chi-Ching Yang
Author(s):  
Samaneh Mohammadpour ◽  
Tahereh Binazadeh

This paper considers the robust synchronization of chaotic systems in the presence of nonsymmetric input saturation constraints. The synchronization happens between two nonlinear master and slave systems in the face of model uncertainties and external disturbances. A new adaptive sliding mode controller is designed in a way that the robust synchronization occurs. In this regard, a theorem is proposed, and according to the Lyapunov approach the adaptation laws are derived, and it is proved that the synchronization error converges to zero despite of the uncertain terms in master and slave systems and nonsymmetric input saturation constraints. Finally, the proposed method is applied on chaotic gyro systems to show its applicability. Computer simulations verify the theoretical results and also show the effective performance of the proposed controller.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142091698 ◽  
Author(s):  
Pengcheng Wang ◽  
Dengfeng Zhang ◽  
Baochun Lu

This article investigates a difficult problem which focuses on the external disturbance and dynamic uncertainty in the process of trajectory tracking. This article presents a robust adaptive fuzzy terminal sliding mode controller with low-pass filter. The low-pass filter can provide smooth position and speed signals. The fuzzy terminal sliding mode controller can achieve fast convergence and desirable tracking precision. Chattering is eliminated with continuous control law, due to high-frequency switching terms contained in the first derivative of actual control signals. Ignoring the prior knowledge upper bound, the controller can reduce the influence of the uncertain kinematics and dynamics in the actual situation. Finally, the experiment is carried out and the results show the performance of the proposed controller.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Juntao Fei ◽  
Zhe Wang ◽  
Xiao Liang

In this paper, a robust adaptive fractional fast terminal sliding mode controller is introduced into the microgyroscope for accurate trajectory tracking control. A new fast terminal switching manifold is defined to ensure fast finite convergence of the system states, where a fractional-order differentiation term emerges into terminal sliding surface, which additionally generates an extra degree of freedom and leads to better performance. Adaptive algorithm is applied to estimate the damping and stiffness coefficients, angular velocity, and the upper bound of the lumped nonlinearities. Numerical simulations are presented to exhibit the validity of the proposed method, and the comparison with the other two methods illustrates its superiority.


2001 ◽  
Vol 11 (04) ◽  
pp. 1149-1158 ◽  
Author(s):  
YIGUANG HONG ◽  
HUASHU QIN ◽  
GUNARONG CHEN

This letter addresses the problem of robust adaptive control for synchronization of continuous-time coupled chaotic systems, which may be subjected to disturbances. A general model is studied via two different approaches, using either state feedback or measured output feedback controls. Adaptive controllers are designed, in which a sliding mode structure is employed to increase the robustness of the closed-loop systems. When only output variables are measurable for synchronization, the adaptive controllers are designed by incorporating with a filter and using the so-called σ-modification technique. Several numerical examples are presented to show the effectiveness of the proposed chaos synchronization methods.


Sign in / Sign up

Export Citation Format

Share Document