scholarly journals Summertime gap winds of the Soya Strait induced by the developed Okhotsk high

2011 ◽  
Vol 12 (3) ◽  
pp. 316-320 ◽  
Author(s):  
Teruhisa Shimada ◽  
Hiroshi Kawamura
Keyword(s):  

Sensors ◽  
2008 ◽  
Vol 8 (8) ◽  
pp. 4894-4914 ◽  
Author(s):  
Haibo Liu ◽  
Peter Olsson ◽  
Karl Volz


2007 ◽  
Vol 20 (19) ◽  
pp. 4982-4994 ◽  
Author(s):  
Naoki Sato ◽  
Masaaki Takahashi

Abstract The authors identified an upper-level pressure anomaly pattern corresponding to the interannual variability of the Okhotsk high in midsummer (late July and early August) as a predominant anomaly pattern in the Northern Hemisphere, by using objectively analyzed data. According to the results of empirical orthogonal function (EOF) analyses and composite analyses, a positive pressure anomaly appeared near the tropopause over eastern Siberia in years with strong Okhotsk highs. Examination of the heat budget in the lower troposphere revealed that a negative surface temperature anomaly observed in northern Japan was brought by the advection of the climatological temperature gradient from the anomalous wind associated with the upper-level anticyclonic anomaly. It was also demonstrated that the anomaly field over Siberia does not accompany predominant vorticity forcing or Rossby wave propagation from the west with a specific phase. However, positive kinetic energy conversion from the climatological basic field to the anomaly field is estimated. The energy conversion contributes to maintaining the anomaly pattern. By the numerical experiments using a linear barotropic model, it is suggested that the upper-level anomaly pattern related to the anomalous Okhotsk high appears through the interaction with the climatological basic field, even though the external forcings are homogeneously distributed.



1998 ◽  
Vol 37 (5) ◽  
pp. 419-424 ◽  
Author(s):  
Tadahiro Arakawa ◽  
Noriko Yamazaki
Keyword(s):  


2009 ◽  
Vol 137 (11) ◽  
pp. 3771-3785 ◽  
Author(s):  
Yafei Wang ◽  
Anthony R. Lupo

Abstract Using data for the month of June from 1951 through 2000, this study examined the air–sea interactions over the North Pacific after El Niño matured during the preceding fall season. The principal findings of this work are the following: 1) a coherent region near the international date line (IDL) in the extratropical North Pacific revealed an area of significant negative correlations (SNCs) between the preceding November sea surface temperature (SST) in the Niño-3 region and the June SST in the North Pacific. Also, two indexes of the June Okhotsk high show a significant positive correlation with the November SST in the Niño-3 region during the 1963–2000 period. 2) The strong southeastward wave flux from the upstream area of the Okhotsk Sea over much of the North Pacific in the midlatitudes is associated with a strong preceding El Niño event, the development of the Okhotsk high, and a negative 500-hPa geopotential height/SST anomaly around the coherent region. The stationary wave propagation plays a major part in maintaining the low SSTs in the coherent region and suppressing the northward progress of the subtropical high. This process partially bridges the connection between the central equatorial Pacific warming (CEPW) and the East Asian summer monsoon. 3) A wave train–like anomaly in the SST (tilted northwest–southeast) was established and maintained in the North Pacific during the summer of 1998. This coincided with the direction of the atmospheric Rossby wave propagation as the strong southeastward wave flux was scattered over the midlatitude North Pacific. This event provides solid evidence that Rossby wave propagation plays an important role in forming an oceanic temperature wave train in the extratropical Pacific through the barotropic process.



2007 ◽  
Vol 20 (15) ◽  
pp. 3768-3784 ◽  
Author(s):  
Rosario Romero-Centeno ◽  
Jorge Zavala-Hidalgo ◽  
G. B. Raga

Abstract The low-level seasonal and intraseasonal wind variability over the northeastern tropical Pacific (NETP), its relationship with other variables, and the connection with large- and middle-scale atmospheric patterns are analyzed using a suite of datasets. Quick Scatterometer (QuikSCAT) wind data show that the low-level circulation over the NETP is mainly affected by the northerly trades, the southerly trades, and the wind jets crossing through the Tehuantepec, Papagayo, and Panama mountain gaps. The seasonal and intraseasonal evolution of these wind systems determines the circulation patterns over the NETP, showing predominant easterly winds in winter and early spring and wind direction reversals in summer over the central region of the NETP. During summer, when southerly trades are the strongest and reach their maximum northward penetration, weak westerlies are observed in June, easterlies in July–August, despite that strong southerlies tend to turn eastward, and again westerlies in September–October. This circulation pattern appears to be related to the Tehuantepec and Papagayo jets, which slightly strengthen during midsummer favored by the westward elongation and intensification of the Azores–Bermuda high (ABH). This ABH evolution induces an across-gap pressure gradient over the Isthmus of Tehuantepec favoring the generation of the jet and a meridional sea level pressure (SLP) gradient in the western Caribbean that favors the funneling of the trade winds through the Papagayo gap. The SLP pattern causing the gap winds in winter is different than in midsummer, being the southeastward intrusion of high pressure systems coming from the northwest, the main cause of the large meridional SLP gradients in Tehuantepec and the western Caribbean. The westward low-level circulation observed over the central-eastern region of the NETP during midsummer induces westward moisture fluxes in the lower layers of the atmosphere, displaces convergence areas away from the coasts, and confines the relatively strong convergence in the easternmost NETP to the south of the area of influence of the wind jets and associated easterlies, contributing to the development of the midsummer drought observed in southern Mexico and Central America.



10.1175/826.1 ◽  
2004 ◽  
Vol 19 (6) ◽  
pp. 970-992 ◽  
Author(s):  
Justin Sharp ◽  
Clifford F. Mass

Abstract This paper quantifies the impact of the Columbia Gorge on the weather and climate within and downstream of this mesoscale gap and examines the influence of synoptic-scale flow on gorge weather. Easterly winds occur more frequently and are stronger at stations such as Portland International Airport (KPDX) that are close to the western terminus of the gorge than at other lowland stations west of the Cascades. In the cool season, there is a strong correlation between east winds at KPDX and cooler temperatures in the Columbia Basin, within the gorge, and over the northern Willamette River valley. At least 56% of the annual snowfall, 70% of days with snowfall, and 90% of days with freezing rain at KPDX coincide with easterly gorge flow. Synoptic composites were created to identify the large-scale patterns leading to strong winds, snowfall, and freezing rain in the gorge. These composites showed that all gorge gap flow events are associated with a high-amplitude 500-mb ridge upstream of the Pacific Northwest, colder than normal 850-mb temperatures over the study region, and a substantial offshore sea level pressure gradient force between the interior and the northwest coast. However, the synoptic evolution varies for different kinds of gorge weather events. For example, the composite of the 500-mb field for freezing rain events features a split developing in the upstream ridge with zonal flow at midlatitudes, while for easterly gap winds accompanied by snowfall, there is an amplification of the ridge.



1981 ◽  
Vol 109 (10) ◽  
pp. 2221-2233 ◽  
Author(s):  
James E. Overland ◽  
Bernard A. Walter
Keyword(s):  


2014 ◽  
Vol 344 ◽  
pp. 200-210 ◽  
Author(s):  
S.W. Bae ◽  
K.E. Lee ◽  
Y. Park ◽  
K. Kimoto ◽  
K. Ikehara ◽  
...  


2015 ◽  
Vol 93 (2) ◽  
pp. 229-244 ◽  
Author(s):  
Shinji MATSUMURA ◽  
Koji YAMAZAKI ◽  
Tomonori SATO
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document