Sun, Solar System, Stars, Interstellar Matter, Galaxy, Extragalactic Systems, Instruments, History of Astronomy

2005 ◽  
Vol 326 (7) ◽  
pp. 647-674
Author(s):  
John Chambers ◽  
Jacqueline Mitton

The birth and evolution of our solar system is a tantalizing mystery that may one day provide answers to the question of human origins. This book tells the remarkable story of how the celestial objects that make up the solar system arose from common beginnings billions of years ago, and how scientists and philosophers have sought to unravel this mystery down through the centuries, piecing together the clues that enabled them to deduce the solar system's layout, its age, and the most likely way it formed. Drawing on the history of astronomy and the latest findings in astrophysics and the planetary sciences, the book offers the most up-to-date and authoritative treatment of the subject available. It examines how the evolving universe set the stage for the appearance of our Sun, and how the nebulous cloud of gas and dust that accompanied the young Sun eventually became the planets, comets, moons, and asteroids that exist today. It explores how each of the planets acquired its unique characteristics, why some are rocky and others gaseous, and why one planet in particular—our Earth—provided an almost perfect haven for the emergence of life. The book takes readers to the very frontiers of modern research, engaging with the latest controversies and debates. It reveals how ongoing discoveries of far-distant extrasolar planets and planetary systems are transforming our understanding of our own solar system's astonishing history and its possible fate.


2016 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Nicholas Smit-Keding

Current popular narratives regarding the history of astronomy espouse the narrative of scientific development arising from clashes between observed phenomena and dogmatic religious scripture. Such narratives consider the development of our understandings of the cosmos as isolated episodes in ground-breaking, world-view shifting events, led by rational, objective and secular observers. As observation of astronomical development in the early 1600s shows, however, such a narrative is false. Developments by Johannes Kepler, for instance, followed earlier efforts by Nicholas Copernicus to refine Aristotelian-based dogma with observed phenomena. Kepler's efforts specifically were not meant to challenge official Church teachings, but offer a superior system to what was than available, based around theological justifications. Popular acceptance of a heliocentric model came not from Kepler's writings, but from the philosophical teachings of Rene Descartes. Through strictly mathematical and philosophical reasoning, Descartes not only rendered the Aristotelian model baseless in society, but also provided a cosmological understanding of the universe that centred our solar system within a vast expanse of other stars. The shift than, from the Aristotelian geocentric model to the heliocentric model, came not from clashes between theology and reason, but from negotiations between theology and observed phenomena. 


1984 ◽  
Vol 17 (3) ◽  
pp. 295-309 ◽  
Author(s):  
Mari Williams

In 1837 the German-born astronomer F. G. W. Struve published his famous catalogue of double stars. For Struve this was the culmination of 12 years' detailed observation of a class of celestial objects lying exclusively beyond the solar system; for historians of astronomy it poses the problem of explaining why the study of double stars became a significant part of astronomical endeavour, as it did, during the 1820s and 1830s. For, although Struve's interest was extreme, it was shared to a lesser extent by several eminent contemporaries, including John Herschel, Friedrich Bessel, Johann Encke, James South and Félix Savary. Their combined efforts represented an important transition in astronomy: for the first time one of the emphases of the subject moved beyond the solar system to the so-called fixed stars. The question of the emergence of interest in double stars is of historical significance, therefore, as it is related to the problem of the origins of ‘stellar astronomy’. This essay is thus intended to offer an explanation of astronomers' interest in double stars, and to tackle the related question of whether this transition constituted a major break in the history of astronomy. Furthermore it is proposed that answers to these problems may be found by considering the practice of astronomy dominant during the first half of the nineteenth century. Astronomers in this period were overwhelmingly concerned with a refined form of positional astronomy. The problems they chose to solve were by and large related to the difficulties of the accurate reduction of observational data, and the compilation of reliable tables and star charts, which were then used as a background against which the motions of solar system objects were plotted. By assessing individuals' studies of double stars within this context it can be seen firstly that such studies were no more or less than specific examples of a general case, and secondly that the stars themselves were not usually of intrinsic interest. In general it was the positions of the stars on the


1971 ◽  
Vol 12 ◽  
pp. 447-460 ◽  
Author(s):  
George W. Wetherill

Much of what we know about the early history of the solar system has been learned from the study of meteorites. This results from the fact, demonstrated by isotopic age measurements, that all of the various classes of stone and iron meteorites were formed 4.6 X 109 yr ago within a short period of time, probably less than 100 million yr in duration. This is also the age of Earth and the Moon and may be presumed to be the time of formation of the solid bodies in the solar system. Measurements of the products of the decay of the extinct radioactive isotopes 129Xe and 244Pu show, furthermore, that the formation of these solid bodies occurred within 100 million yr of the time of separation of the solar nebula from interstellar matter. Except for physical fragmentation into smaller bodies, the chemical and mineralogical composition of most meteorites has been essentially unaltered since this time during the formation interval of the solar system.


1971 ◽  
Vol 28 (2) ◽  
pp. 152-175 ◽  
Author(s):  
John E. Hodge

The nineteenth century witnessed the first major change in astronomy since the birth of the science in antiquity. With the exception, in the eighteenth century, of William Herschel's great work in the course of which he speculated on the origin, composition and shape of the universe itself, man's concern with the heavens had been limited to plotting and cataloguing the positions and the movements of the stars and planets. The entire history of astronomy had consisted of more and more accurate observations of the solar system and the stars within our own galaxy, although only the haziest notions of the shape and size of that “island universe” were entertained by thoughtful astronomers.


1962 ◽  
Vol 11 (02) ◽  
pp. 137-143
Author(s):  
M. Schwarzschild

It is perhaps one of the most important characteristics of the past decade in astronomy that the evolution of some major classes of astronomical objects has become accessible to detailed research. The theory of the evolution of individual stars has developed into a substantial body of quantitative investigations. The evolution of galaxies, particularly of our own, has clearly become a subject for serious research. Even the history of the solar system, this close-by intriguing puzzle, may soon make the transition from being a subject of speculation to being a subject of detailed study in view of the fast flow of new data obtained with new techniques, including space-craft.


Author(s):  
D.F. Blake ◽  
LJ. Allamandola ◽  
G. Palmer ◽  
A. Pohorille

The natural history of the biogenic elements H, C, N, O, P and S in the cosmos is of great interest because it is these elements which comprise all life. Material ejected from stars (or pre-existing in the interstellar medium) is thought to condense into diffuse bodies of gravitationally bound gas and dust called cold interstellar molecular clouds. Current theories predict that within these clouds, at temperatures of 10-100° K, gases (primarily H2O, but including CO, CO2, CH3OH, NH3, and others) condense onto submicron silicate grains to form icy grain mantles. This interstellar ice represents the earliest and most primitive association of the biogenic elements. Within these multicomponent icy mantles, pre-biotic organic compounds are formed during exposure to UV radiation. It is thought that icy planetesimals (such as comets) within our solar system contain some pristine interstellar material, including ices, and may have (during the early bombardment of the solar system, ∼4 Ga) carried this material to Earth.Despite the widespread occurrence of astrophysical ices and their importance to pre-biotic organic evolution, few experimental data exist which address the relevant phase equilibria and possible structural states. A knowledge of the petrology of astrophysical ice analogs will allow scientists to more confidently interpret astronomical IR observations. Furthermore, the development and refinement of procedures for analyzing ices and other materials at cryogenic temperatures is critical to the study of materials returned from the proposed Rosetta comet nucleus and Mars sample return missions.


2004 ◽  
Vol 47 (1-2) ◽  
pp. 95-109
Author(s):  
Milan Cirkovic

In this paper we briefly consider the role Kant's early philosophy, and notably his "island universes" hypothesis played in the history of astronomy. There are many reasons for this, including the coincidence of Kant's jubilee year with 80 years since Hubble's discovery (1924) of the extragalactic universe. This discovery, confirming the "island universes" hypothesis revolutionized our picture of the physical universe. Prehistory of this revolution has another aspect, apart from the historical one, of significance for philosophy: it presents one of the best supported and empirically documented instances of the application of the Duhem-Quine thesis on subdetermination of theory by experiments.


Author(s):  
Karel Schrijver

This chapter describes how the first found exoplanets presented puzzles: they orbited where they should not have formed or where they could not have survived the death of their stars. The Solar System had its own puzzles to add: Mars is smaller than expected, while Venus, Earth, and Mars had more water—at least at one time—than could be understood. This chapter shows how astronomers worked through the combination of these puzzles: now we appreciate that planets can change their orbits, scatter water-bearing asteroids about, steal material from growing planets, or team up with other planets to stabilize their future. The special history of Jupiter and Saturn as a pair bringing both destruction and water to Earth emerged from the study of seventeenth-century resonant clocks, from the water contents of asteroids, and from experiments with supercomputers imposing the laws of physics on virtual worlds.


Sign in / Sign up

Export Citation Format

Share Document