Photoluminescence performance of green light emitting terbium (III) complexes with β‐hydroxy ketone and nitrogen donor ancillary ligands

Luminescence ◽  
2020 ◽  
Author(s):  
Jyoti Khanagwal ◽  
Rajesh Kumar ◽  
Rekha Devi ◽  
Manju Bala ◽  
Priyanka Sehrawat ◽  
...  
Author(s):  
Hyunsik Im ◽  
Atanu Jana ◽  
Vijaya Gopalan Sree ◽  
QIANKAI BA ◽  
Seong Chan Cho ◽  
...  

Lead-free, non-toxic transition metal-based phosphorescent organic–inorganic hybrid (OIH) compounds are promising for next-generation flat-panel displays and solid-state light-emitting devices. In the present study, we fabricate highly efficient phosphorescent green-light-emitting diodes...


2021 ◽  
Vol 118 (2) ◽  
pp. 021102
Author(s):  
Dong-Pyo Han ◽  
Ryoto Fujiki ◽  
Ryo Takahashi ◽  
Yusuke Ueshima ◽  
Shintaro Ueda ◽  
...  

1992 ◽  
Vol 283 ◽  
Author(s):  
Peter Steiner ◽  
Frank Kozlowski ◽  
Hermann Sandmaier ◽  
Walter Lang

ABSTRACTFirst results on light emitting diodes in porous silicon were reported in 1991. They showed a quantum efficiency of 10-7 to 10-5 and an orange spectrum. Over the last year some progress was achieved:- By applying UV-light during the etching blue and green light emitting diodes in porous silicon are fabricated.- When a p/n junction is realized within the porous region, a quantum efficiency of 10-4 is obtained.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2599
Author(s):  
Meng-Xi Mao ◽  
Fang-Ling Li ◽  
Yan Shen ◽  
Qi-Ming Liu ◽  
Shuai Xing ◽  
...  

Phosphorescent iridium(III) complexes have been widely researched for the fabrication of efficient organic light-emitting diodes (OLEDs). In this work, three red Ir(III) complexes named Ir-1, Ir-2, and Ir-3, with Ir-S-C-S four-membered framework rings, were synthesized efficiently at room temperature within 5 min using sulfur-containing ancillary ligands with electron-donating groups of 9,10-dihydro-9,9-dimethylacridine, phenoxazine, and phenothiazine, respectively. Due to the same main ligand of 4-(4-(trifluoromethyl)phenyl)quinazoline, all Ir(III) complexes showed similar photoluminescence emissions at 622, 619, and 622 nm with phosphorescence quantum yields of 35.4%, 50.4%, and 52.8%, respectively. OLEDs employing these complexes as emitters with the structure of ITO (indium tin oxide)/HAT-CN (dipyra-zino[2,3-f,2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile, 5 nm)/TAPC (4,4′-cyclohexylidenebis[N,N-bis-(4-methylphenyl)aniline], 40 nm)/TCTA (4,4″,4″-tris(carbazol-9-yl)triphenylamine, 10 nm)/Ir(III) complex (10 wt%): 2,6DCzPPy (2,6-bis-(3-(carbazol-9-yl)phenyl)pyridine, 10 nm)/TmPyPB (1,3,5-tri(mpyrid-3-yl-phenyl)benzene, 50 nm)/LiF (1 nm)/Al (100 nm) achieved good performance. In particular, the device based on complex Ir-3 with the phenothiazine unit showed the best performance with a maximum brightness of 22,480 cd m−2, a maximum current efficiency of 23.71 cd A−1, and a maximum external quantum efficiency of 18.1%. The research results suggest the Ir(III) complexes with a four-membered ring Ir-S-C-S backbone provide ideas for the rapid preparation of Ir(III) complexes for OLEDs.


2001 ◽  
Vol 34 (12) ◽  
pp. 4124-4129 ◽  
Author(s):  
Min Zheng ◽  
Liming Ding ◽  
E. Elif Gürel ◽  
Paul M. Lahti ◽  
Frank E. Karasz
Keyword(s):  

2010 ◽  
Vol 428-429 ◽  
pp. 421-425 ◽  
Author(s):  
Ye Tang Guo ◽  
Yuan Ming Huang

Well known long-persistent phosphorous strontium aluminates were synthesized by conventional combustion method in a furnace at about 600oC. By incorporating the obtained phosphorous strontium aluminates into organic host polystyrene, we prepared the organic-inorganic composite material (i.e., phosphor-polystyrene) which could be cast into flexible and green-light- emitting films. The morphology of the obtained phosphorous strontium aluminates and the phosphorescence of the organic-inorganic composite films were characterized with the scanning electron microscopy and the fluorescence spectroscopy, respectively. Our results show that the organic-inorganic composite films can be used as green-light- emitting roll-able screens in the industry of information displays.


1995 ◽  
Vol 187 (2) ◽  
pp. 467-470 ◽  
Author(s):  
W. C. Harsch ◽  
G. Cantwell ◽  
J. F. Schetzina

2000 ◽  
Vol 180 (1) ◽  
pp. 217-223 ◽  
Author(s):  
M.W. Cho ◽  
J.H. Chang ◽  
H. Wenisch ◽  
H. Makino ◽  
T. Yao

Sign in / Sign up

Export Citation Format

Share Document