Green Aluminate Phosphors Used for Information Display

2010 ◽  
Vol 428-429 ◽  
pp. 421-425 ◽  
Author(s):  
Ye Tang Guo ◽  
Yuan Ming Huang

Well known long-persistent phosphorous strontium aluminates were synthesized by conventional combustion method in a furnace at about 600oC. By incorporating the obtained phosphorous strontium aluminates into organic host polystyrene, we prepared the organic-inorganic composite material (i.e., phosphor-polystyrene) which could be cast into flexible and green-light- emitting films. The morphology of the obtained phosphorous strontium aluminates and the phosphorescence of the organic-inorganic composite films were characterized with the scanning electron microscopy and the fluorescence spectroscopy, respectively. Our results show that the organic-inorganic composite films can be used as green-light- emitting roll-able screens in the industry of information displays.

2010 ◽  
Vol 428-429 ◽  
pp. 544-547 ◽  
Author(s):  
Ye Tang Guo ◽  
Yuan Ming Huang

Strontium-aluminates-based phosphorescent composite films were prepared by homogeneously distributing the green light emitting phosphors within polystyrene hosts. The composite films have the unique properties of flexibility of the polymers and the long-lasting phosphorescence of the strontium-aluminates-based phosphors. The microstructures of the flexible composite films were characterized with scanning electron microscopy. The results indicated that the organic and inorganic materials can be combined with each other better, and the composite films can be easily rolled but will not generate cracks. Therefore, this composite technology can effectively enhance the moisture resistance of the phosphors and the films can be used in the filed of information display.


2013 ◽  
Vol 750-752 ◽  
pp. 1919-1923 ◽  
Author(s):  
Guo Xian Zhou ◽  
Ming Wei Yuan ◽  
Lin Jiang ◽  
Ming Long Yuan ◽  
Hong Li Li

The laponite-poly (L-lactide) composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The result shows that the homogeneous and smooth composite film is prepared with 1, 4-dioxane. Thermogravimetry analysis (TG) and tensile strength studies demonstrate that the thermal stability and tensile strength are improved with the laponite added. The scanning electron microscopy (SEM) measurement indicates that the pores of composite films get uniform and network structure is more and more compact with compared to pure PLA film. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and thermal stability of PLA.


2018 ◽  
Vol 38 (7) ◽  
pp. 641-647
Author(s):  
Jean Aimé Mbey ◽  
Fabien Thomas ◽  
Sandrine Hoppe

Abstract In the present study, a combined use of photonic microscopy, scanning electron microscopy and 3D X-ray tomography is carried out in order to analyze the dispersion and the distribution of raw and dimethyl sulfoxide (DMSO)-intercalated kaolinite used as filler in cassava starch-based films. It is shown that the association of these techniques allows a valuable analysis of clay dispersion in polymer-clay composite films. In the case of kaolinite-starch composite films on which this study is focused, it is obvious that previous intercalation of kaolinite with DMSO is an efficient way to improve dispersion and distribution of kaolinite in a starch polymer matrix.


1980 ◽  
Vol 46 (1) ◽  
pp. 87-96
Author(s):  
N. Chaly ◽  
J.V. Possingham ◽  
W.W. Thomson

Spinach leaf disks were cultured for 5 days in low-intensity green light and then were transferred to high-intensity white light. Harvests over the next 16 h established that cell area increased by about 80% and chloroplast number per cell increased by about 65%, while the percentage of dumbbell-shaped chloroplasts per cell decreased by 65%. Freeze-etch replicas of fixed and unfixed leaf disks, as well as scanning electron-microscope preparations of fixed material, contained dumbbell-shaped chloroplasts constricted to various degrees. Freeze-etch replicas of unfixed cells from young leaf bases, in which the number of chloroplasts per cell is known to be rapidly increasing, also contained many constricted chloroplasts. It is concluded that dumbbell-shaped chloroplasts occur in vivo and represent a stage in the division of chloroplasts.


1999 ◽  
Vol 600 ◽  
Author(s):  
Jin Wei Wang ◽  
M. P. Srinivasan

AbstractA new method of making conductive composite films by permeation of the conducting guest species into the host is reported. A layer of poly(3-n-dodecyl thiophene) (P3ddt) is embedded at the surface of polyimide by permeation of the monomer or polymer (in solution in tetrahydrofuran or chloroform) into a solution of polyamic acid in n-methyl pyrrolidinone or dimethyl acetamide. The resulting composites were imidised and polymerized (if necessary). Chemical imidisation yielded composite -films that retained the conducting polymer even when the composite was subjected to solvent extraction. The films were conductive upon doping with iodine and recovered conductivity when they were exposed to iodine vapor subsequent to thermal de-doping. Thermogravimetry showed that the amount of thiophene incorporated into the polyimide was higher for permeation of the polymer than that of the monomer; however, the amount of p3ddt incorporated by the latter method was still higher than the amount that could be incorporated by blending polyamic acid with p3ddt. The levels of conductivity and speed of recovery for doped films were also higher for the permeated films. Results of scanning electron microscopy suggested that the higher mobility afforded by contact in the liquid state have contributed greater entanglement between the constituents leading to higher thermal and solvent resistance of the conducting constituent. The permeation method could be adopted to form composite films in solvent systems that are not completely miscible.


2018 ◽  
Vol 53 (7) ◽  
pp. 981-990
Author(s):  
Fernanda P Ritto ◽  
Eduardo Moreira da Silva ◽  
Hélio Rodrigues Sampaio-Filho ◽  
Raimundo A Lacerda ◽  
Márcio AP Borges ◽  
...  

The aim of this study was to characterize organic and disperse phase of a microhybrid (Mh – Filtek Z250) and a nanofilled (Nf – Filtek Z350) dental composite and analyze the influence of two LCUs (QHT-quartz-halogen tungsten and LED – light-emitting diode) on its physical–mechanical properties (degree of conversion, polymerization shrinkage, Vickers hardness and diametral tensile strength). Surface morphology was studied by scanning electron microscopy. The disperse phase content was measured using thermogravimetric analysis (TGA) and the organic fractions were qualitatively analyzed by nuclear magnetic resonance spectroscopy. Physical–mechanical properties were analyzed varying dental composite and LCU: Mh-QHT, Nf-QHT, Mh-LED and Nf-LED. The degree of conversion was evaluated using Raman spectrophotometry and polymerization shrinkage was measured by water picnometry. Mechanical behavior was analyzed by Vickers microhardness and diametral tensile testing. Scanning electron microscopy analysis showed similar microstructure of the materials mainly composed with different-sized particles dispersed within methacrylate matrix. Thermogravimetric analysis shows 80.13% of inorganic fraction for microhybrid composite and 75.29% for nanofilled. Nuclear magnetic resonance analysis showed similar organic structure for composites and did not show the presence of the monomer TEGDMA. Different light sources did not influence the tested properties, but considering different composites, nanofilled showed the highest degree of conversion (Gr 2:77%, Gr 4: 79.4%). The study shows that when the optimum radiant exposure (24 J/cm2) was used for polymerization of composites, regardless of the polymerization source, the properties of these resin materials showed satisfactory and similar results in relation to the conversion of polymers, polymerization shrinkage and mechanical behavior.


2012 ◽  
Vol 545 ◽  
pp. 169-171 ◽  
Author(s):  
Mawar Hazwani Jasimin ◽  
Nurhanna Badar ◽  
Rusdi Roshidah ◽  
Norlida Kamarulzaman

Aluminium oxide is one of the metal oxides that can exist in many phases such as α, θ, η etc. All the phases obtained are affected by annealing temperature and synthesis route. In this research the Al2O3 powders were synthesized by the combustion method using triethanolamine as fuels. A pure η phase as well as a mixed α and η phases were obtained. The size and morphology of Al2O3 particles were studied using scanning electron microscopy (SEM).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lokesh R. Rane ◽  
Niranjan R. Savadekar ◽  
Pravin G. Kadam ◽  
Shashank T. Mhaske

The purpose of this study is to improve the performance properties of K-carrageenan (K-CRG) by utilizing nanosilica (NSI) as the reinforcing agent. The composite films were prepared by solution casting method. NSI was added up to 1.5% in the K-CRG matrix. The prepared films were characterized for mechanical (tensile strength, tensile modulus, and elongation at break), thermal (differential scanning calorimetry, thermogravimetric analysis), barrier (water vapour transmission rate), morphological (scanning electron microscopy), contact angle, and crystallinity properties. Tensile strength, tensile modulus, and crystallinity were found to have increased by 13.8, 15, and 48% whereas water vapour transmission rate was found to have decreased by 48% for 0.5% NSI loaded K-CRG composite films. NSI was found to have formed aggregates for concentrations above 0.5% as confirmed by scanning electron microscopy. Melting temperature, enthalpy of melting, and degradation temperature of K-CRG increased with increase in concentration of NSI in K-CRG. Contact angle also increased with increase in concentration of NSI in K-CRG, indicating the decrease in hydrophilicity of the films improving its water resistance properties. This knowledge of the composite film could make beneficial contributions to the food and pharmaceutical packaging applications.


Sign in / Sign up

Export Citation Format

Share Document