Evaluation of the binding effect and cytotoxicity assay of 2‐Ethyle‐5‐(4‐methylphenyl) pyrimido pyrazol ophthalazine trione on the calf thymus DNA: spectroscopic, calorimetric and molecular dynamics approaches

Luminescence ◽  
2021 ◽  
Author(s):  
Narges Marjani ◽  
Maryam Dareini ◽  
Maryam Asadzade‐Lotfabad ◽  
Mahtab Pejhan ◽  
Parisa Mokaberi ◽  
...  
2007 ◽  
Vol 21 (4) ◽  
pp. 193-204 ◽  
Author(s):  
Cristina M. Muntean ◽  
Ioan Bratu

In this paper the Raman total half bandwidths of calf-thymus DNA vibrations have been measured as a function of pH, monovalent and divalent cations' type and concentration. The dependence of different band parameters on DNA molecular subgroup structure, on pH and on Na+, Ca2+and Mg2+ions concentrations, respectively, are reported. It is shown that changes in (sub)picosecond dynamics of molecular subgroups in calf-thymus DNA can be monitored with confocal Raman microspectroscopy.The half bandwidths and the global relaxation times for the vibrations at 728 cm−1(dA), 785 cm−1(dC), 1094 cm−1(PO2−), 1377 cm−1(dA, dG, dT, dC), 1488 cm−1(dG, dA) and 1580 cm−1(dG, dA) of calf-thymus DNA are presented. The full-widths at half-height (FWHH) of the bands in calf-thymus DNA are typically in the wavenumber range from 7.4 to 31 cm−1. The bandwidths in the Raman spectra are sensitive to a dynamics active on a time scale from 0.34 to 1.44 ps.Low pH-induced melting of double helical structure in calf-thymus DNA results for some bands in shorter global relaxation times, as a consequence of the increased interaction of the base moieties with the solvent molecules.The molecular dynamics characterizing the 785, 1094, 1377 and 1580 cm−1vibrations, is faster in the case of high divalent cations DNA sample (pH 7), as compared to the respective low divalent cations DNA sample (pH 7), for both Ca2+and Mg2+ions. The vibrational energy transfer process of the guanine band at 1488 cm−1is slower for the high salt DNA sample, pH 7 as compared to the corresponding low salt DNA sample, pH 7, for both Ca2+and Mg2+. Molecular dynamics characterizing the vibration at 1488 cm−1is faster for DNA sample at high Na+ions (pH 7), as compared to the DNA sample at low Na+ions (pH 7).As far as the CaDNA and MgDNA complexes are concerned (pH 7), the global relaxation times of some base vibrations decrease for the case of magnesium ions, as compared to the case of the same concentration of calcium ions. The different ionic radius of the two types of metal cations (0.72 Å for Mg and 0.99 Å for Ca) were considered in explaining these results.Molecular relaxation processes of DNA subgroups, upon lowering the pH, in the presence of Na+, Ca2+and Mg2+ions are presented. Particularly, at low Ca2+concentration, upon lowering the pH, the molecular dynamics of DNA subgroups corresponding to vibrations at 728, 1376, 1488 and 1580 cm−1is much faster, probably due to the denaturation process of the double helical DNA.


2008 ◽  
Vol 22 (5) ◽  
pp. 345-359 ◽  
Author(s):  
Cristina M. Muntean ◽  
Ioan Bratu

In this paper the Raman total half bandwidths of calf-thymus DNA vibrations have been measured as a function of Mn2+ion concentration (0–600 mM), in the presence of two concentrations of Na+cations, respectively. The dependencies of the half bandwidths and of the global relaxation times on DNA molecular subgroup structure, on Mn2+and Na+ions concentrations, respectively, are reported. It is shown that changes in the (sub)picosecond dynamics of molecular subgroups in calf-thymus DNA can be monitored with Raman spectroscopy.In this study the Raman band parameters for the vibrations at 729 cm-1(dA), 787 cm-1(dC), 1094 cm-1(PO2-), 1376 cm-1(dA, dG, dT, dC), 1489 cm-1(dG, dA) and 1578 cm-1(dG, dA) of calf thymus DNA are presented. The full-widths at half-height (FWHH) of the bands in calf-thymus DNA are typically in the wavenumber range from 9 to 33.5 cm-1. It can be observed that the molecular relaxation processes studied in this work, have a global relaxation time smaller than 1.179 ps and larger than 0.317 ps.Mn2+-induced DNA structural changes result for the vibrations at 729 cm-1and 787 cm-1in smaller global relaxation times, and larger half bandwidths, respectively, as compared to the starting value of 0 mM Mn2+. The vibrational energy transfer processes of these two subgroups (dA, dC), respectively, are slower in the case of DNA samples at 10 mM NaCl, as compared to the corresponding DNA samples at 150 mM NaCl. However, the behaviour of the global relaxation times characteristic to the bands at 729 and 787 cm-1is similar with respect to manganese(II) ions concentration, in the case of the two values of Na+ions content, respectively.On the contrary, the molecular dynamics is slower for the base vibrations at 1376, 1489 and 1578 cm-1, in the case of DNA samples at 150 mM NaCl, as compared to the corresponding samples at lower Na+concentration, in almost all Mn2+ions concentration range. The molecular relaxation processes in these three cases, respectively, are quite different for the corresponding samples with different Na+ions content, upon increasing divalent manganese ions concentration.The molecular dynamics characterizing the band near 1094 cm-1of the DNA backbone PO2-symmetric stretching vibration is faster upon increasing the Mn2+ions concentration between 0–600 mM and seems not to be influenced by the Na+ions content, specific to our experimental conditions.


2020 ◽  
Vol 04 ◽  
Author(s):  
Vigen G. Barkhudaryan ◽  
Gayane V. Ananyan ◽  
Nelli H. Karapetyan

Background: The processes of destruction and crosslinking of macromolecules occur simultaneously under the influence of ultraviolet (UV) radiation in synthetic polymers, dry DNA and their concentrated solutions. Objective: The effect of UV radiation on calf thymus DNA in dilute solutions subjected to UV- irradiation was studied in this work. Method: The calf thymus DNA was studied in dilute solutions using viscometry, absorption spectroscopy and electrophoresis. Results: It was shown, that at a low concentration of DNA in the buffer solution ([DNA] = 85 μg / ml) under the influence of UV radiation, the processes of destruction of macromolecules and an increase in their flexibility predominate, which is accompanied by a gradual decrease in the viscosity of their solution. In addition, due to the low concentration of the solution, intramolecular crosslinking of macromolecules predominates, which also reduces their size and, consequently, the viscosity of the solution. Conclusion: It was concluded, that in dilute DNA solutions, due to the predominance of the processes of intramolecular crosslinking of macromolecules over intermolecular, only constant processes of decreasing the sizes of DNA macromolecules occur. As a result, its solubility remains virtually unchanged during UV irradiation. The described comments are also excellently confirmed by the results of absorption spectroscopy and electrophoresis


1989 ◽  
Vol 54 (7) ◽  
pp. 2021-2026
Author(s):  
Marie Stiborová ◽  
Befekadu Asfaw ◽  
Pavel Anzenbacher

Ce(IV) ions in acidic medium convert a carcinogenic non-aminoazo dye, 1-phenylazo-2-hydroxy-naphthalene (Sudan I) into an ultimate carcinogen, which binds to calf thymus DNA. The principal product of Sudan I oxidation by the Ce(IV) system is the benzenediazonium ion. A minor product is the dihydroxyderivative of Sudan I, 1-(4-hydroxyphenylazo)-2,6-dihydroxynaphthalene. Other minor coloured products (yellow and brown) were not identified. The principal product (the benzenediazonium ion) is responsible for the carcinogenicity of Sudan I, as it covalently binds to DNA. Ce(IV) ions in acidic medium represent a suitable model system, which imitates the activation route of carcinogenic azo dyes.


MAPAN ◽  
2016 ◽  
Vol 31 (3) ◽  
pp. 169-175 ◽  
Author(s):  
Deepti Chadha ◽  
Shweta Agarwal ◽  
Ranjana Mehrotra

Author(s):  
Cleiton M. da Silva ◽  
Marina M. Silva ◽  
Fabiano S. Reis ◽  
Ana Lúcia T.G. Ruiz ◽  
João E. de Carvalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document