scholarly journals Predicting Strain Engineering Strategies Using iKS1317: A Genome‐Scale Metabolic Model of Streptomyces coelicolor

2019 ◽  
Vol 14 (4) ◽  
pp. 1800180 ◽  
Author(s):  
Tjaša Kumelj ◽  
Snorre Sulheim ◽  
Alexander Wentzel ◽  
Eivind Almaas
Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 304
Author(s):  
Cheewin Kittikunapong ◽  
Suhui Ye ◽  
Patricia Magadán-Corpas ◽  
Álvaro Pérez-Valero ◽  
Claudio J. Villar ◽  
...  

Streptomyces albus J1074 is recognized as an effective host for heterologous production of natural products. Its fast growth and efficient genetic toolbox due to a naturally minimized genome have contributed towards its advantage in expressing biosynthetic pathways for a diverse repertoire of products such as antibiotics and flavonoids. In order to develop precise model-driven engineering strategies for de novo production of natural products, a genome-scale metabolic model (GEM) was reconstructed for the microorganism based on protein homology to model species Streptomyces coelicolor while drawing annotated data from databases and literature for further curation. To demonstrate its capabilities, the Salb-GEM was used to predict overexpression targets for desirable compounds using flux scanning with enforced objective function (FSEOF). Salb-GEM was also utilized to investigate the effect of a minimized genome on metabolic gene essentialities in comparison to another Streptomyces species, S. coelicolor.


2021 ◽  
Vol 412 ◽  
pp. 115390
Author(s):  
Kristopher D. Rawls ◽  
Bonnie V. Dougherty ◽  
Kalyan C. Vinnakota ◽  
Venkat R. Pannala ◽  
Anders Wallqvist ◽  
...  

2012 ◽  
Vol 78 (24) ◽  
pp. 8735-8742 ◽  
Author(s):  
Yilin Fang ◽  
Michael J. Wilkins ◽  
Steven B. Yabusaki ◽  
Mary S. Lipton ◽  
Philip E. Long

ABSTRACTAccurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within anin silicomodel using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model ofGeobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-basedin silicomodelof G. metallireducensrelates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637G. metallireducensproteins detected during the 2008 experiment were associated with specific metabolic reactions in thein silicomodel. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through thein silicomodel reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in thein silicomodel that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 168
Author(s):  
John I. Hendry ◽  
Hoang V. Dinh ◽  
Debolina Sarkar ◽  
Lin Wang ◽  
Anindita Bandyopadhyay ◽  
...  

Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabolic (GSM) model, iAnC892, for this organism using annotations and content obtained from multiple databases. iAnC892 describes both the vegetative and heterocyst cell types found in the filaments of Anabaena sp. ATCC 33047. iAnC892 includes 953 unique reactions and accounts for the annotation of 892 genes. Comparison of iAnC892 reaction content with the GSM of Anabaena sp. PCC 7120 revealed that there are 109 reactions including uptake hydrogenase, pyruvate decarboxylase, and pyruvate-formate lyase unique to iAnC892. iAnC892 enabled the analysis of energy production pathways in the heterocyst by allowing the cell specific deactivation of light dependent electron transport chain and glucose-6-phosphate metabolizing pathways. The analysis revealed the importance of light dependent electron transport in generating ATP and NADPH at the required ratio for optimal N2 fixation. When used alongside the strain design algorithm, OptForce, iAnC892 recapitulated several of the experimentally successful genetic intervention strategies that over produced valerolactam and caprolactam precursors.


Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1252-1266 ◽  
Author(s):  
Hassan B. Hartman ◽  
David A. Fell ◽  
Sergio Rossell ◽  
Peter Ruhdal Jensen ◽  
Martin J. Woodward ◽  
...  

Salmonella enterica sv. Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of S. Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in the energy demand while growing in glucose minimal medium. By grouping reactions with similar flux responses, a subnetwork of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions that when removed from the genome-scale model interfered with energy and biomass generation. Eleven such sets were found to be essential for the production of biomass precursors. Experimental investigation of seven of these showed that knockouts of the associated genes resulted in attenuated growth for four pairs of reactions, whilst three single reactions were shown to be essential for growth.


2021 ◽  
Author(s):  
Christopher E. Lawson ◽  
Aniela B. Mundinger ◽  
Hanna Koch ◽  
Tyler B. Jacobson ◽  
Coty A. Weathersby ◽  
...  

AbstractNitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis (iNmo686) and used constraint-based analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and 13C-tracer experiments with bicarbonate and formate coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings support that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO2 fixation. We also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes.ImportanceNitrospira are globally abundant nitrifying bacteria in soil and aquatic ecosystems and wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of N. moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite- oxidizing bacteria.


2019 ◽  
Author(s):  
Snorre Sulheim ◽  
Tjaša Kumelj ◽  
Dino van Dissel ◽  
Ali Salehzadeh-Yazdi ◽  
Chao Du ◽  
...  

AbstractMany biosynthetic gene clusters (BGCs) require heterologous expression to realize their genetic potential, including silent and metagenomic BGCs. Although the engineered Streptomyces coelicolor M1152 is a widely used host for heterologous expression of BGCs, a systemic understanding of how its genetic modifications affect the metabolism is lacking and limiting further development. We performed a comparative analysis of M1152 and its ancestor M145, connecting information from proteomics, transcriptomics, and cultivation data into a comprehensive picture of the metabolic differences between these strains. Instrumental to this comparison was the application of an improved consensus genome-scale metabolic model (GEM) of S. coelicolor. Although many metabolic patterns are retained in M1152, we find that this strain suffers from oxidative stress, possibly caused by increased oxidative metabolism. Furthermore, precursor availability is likely not limiting polyketide production, implying that other strategies could be beneficial for further development of S. coelicolor for heterologous production of novel compounds.


2015 ◽  
Vol 7 (8) ◽  
pp. 869-882 ◽  
Author(s):  
M. Ahsanul Islam ◽  
Karsten Zengler ◽  
Elizabeth A. Edwards ◽  
Radhakrishnan Mahadevan ◽  
Gregory Stephanopoulos

Moorella thermoaceticais a strictly anaerobic, endospore-forming, and metabolically versatile acetogenic bacterium capable of conserving energy by both autotrophic (acetogenesis) and heterotrophic (homoacetogenesis) modes of metabolism.


2009 ◽  
Vol 2 (2) ◽  
pp. 274-286 ◽  
Author(s):  
Timothy D. Scheibe ◽  
Radhakrishnan Mahadevan ◽  
Yilin Fang ◽  
Srinath Garg ◽  
Philip E. Long ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Christian S. Jensen ◽  
Charles J. Norsigian ◽  
Xin Fang ◽  
Xiaohui C. Nielsen ◽  
Jens Jørgen Christensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document