scholarly journals Preparative synthesis of dTDP-L-rhamnose through combined enzymatic pathways

2005 ◽  
Vol 93 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Young-Bok Kang ◽  
Yung-Hun Yang ◽  
Kwang-Won Lee ◽  
Sun-Gu Lee ◽  
Jae Kyung Sohng ◽  
...  
2019 ◽  
Author(s):  
Sean Lund ◽  
Taylor Courtney ◽  
Gavin Williams

Isoprenoids are a large class of natural products with wide-ranging applications. Synthetic biology approaches to the manufacture of isoprenoids and their new-to-nature derivatives are limited due to the provision in Nature of just two hemiterpene building blocks for isoprenoid biosynthesis. To address this limitation, artificial chemo-enzymatic pathways such as the alcohol-dependent hemiterpene pathway (ADH) serve to leverage consecutive kinases to convert exogenous alcohols to pyrophosphates that could be coupled to downstream isoprenoid biosynthesis. To be successful, each kinase in this pathway should be permissive of a broad range of substrates. For the first time, we have probed the promiscuity of the second enzyme in the ADH pathway, isopentenyl phosphate kinase from Thermoplasma acidophilum, towards a broad range of acceptor monophosphates. Subsequently, we evaluate the suitability of this enzyme to provide non-natural pyrophosphates and provide a critical first step in characterizing the rate limiting steps in the artificial ADH pathway.<br>


2020 ◽  
Vol 36 (4) ◽  
pp. 126-135
Author(s):  
T.V. Shushkova ◽  
D.O. Epiktetov ◽  
S.V. Tarlachkov ◽  
I.T. Ermakova ◽  
A.A. Leontievskii

The degradation of persistent organophosphorus pollutants have been studied in 6 soil bacterial isolates and in 3 bacterial strains adapted for utilization of glyphosate herbicide (GP) under laboratory conditions. Significant differences in the uptake of organophosphonates were found in taxonomically close strains possessing similar enzymatic pathways of catabolism of these compounds, which indicates the existence of unknown mechanisms of activity regulation of these enzymes. The effect of adaptation for GP utilization as a sole phosphorus source on assimilation rates of several other phosphonates was observed in studied bacteria. The newly found efficient stains provided up to 56% of GP decomposition after application to the soil in the laboratory. The unresolved problems of microbial GP metabolism and the trends for further research on the creation of reliable biologicals capable of decomposing organophosphonates in the environment are discussed. organophosphonates, glyphosate, biodegradation, bioremediation, C-P lyase, phosphonatase, degrading bacteria Investigation of phosphonatase and genome sequencing were supported by Russian Science Foundation Grant no. 18-074-00021.


1980 ◽  
Vol 45 (2) ◽  
pp. 611-616 ◽  
Author(s):  
Antonina P. Kavunenko ◽  
Antonín Holý

Preparative synthesis of dinucleoside monophosphates, catalyzed by ribonuclease A, is described. Uridine 2',3' -cyclic phosphate was used as a donor, the acceptors being uridine (Ia), N3-methyl-uridine (Ib), 5-methyluridine (Ic), 6-methyluridine (Id), 3-(β-D-ribofuranosyl)uracil (IIa), 1-methyl-3-(β-D-ribofuranosyl)uracil (IIb), 6-azauridine (III) and 6-methyl-2'-deoxyuridine (IV). The obtained compounds of the type UpN (where N is the nucleoside moiety I-IV) were characterized by paper chromatography, electrophoresis and UV-spectra.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 373
Author(s):  
Joshua J. Scammahorn ◽  
Isabel T. N. Nguyen ◽  
Eelke M. Bos ◽  
Harry Van Goor ◽  
Jaap A. Joles

Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 539
Author(s):  
Alexey L. Kayushin ◽  
Julia A. Tokunova ◽  
Ilja V. Fateev ◽  
Alexandra O. Arnautova ◽  
Maria Ya. Berzina ◽  
...  

During the preparative synthesis of 2-fluorocordycepin from 2-fluoroadenosine and 3′-deoxyinosine catalyzed by E. coli purine nucleoside phosphorylase, a slowdown of the reaction and decrease of yield down to 5% were encountered. An unknown nucleoside was found in the reaction mixture and its structure was established. This nucleoside is formed from the admixture of 2′,3′-anhydroinosine, a byproduct in the preparation of 3-′deoxyinosine. Moreover, 2′,3′-anhydroinosine forms during radical dehalogenation of 9-(2′,5′-di-O-acetyl-3′-bromo- -3′-deoxyxylofuranosyl)hypoxanthine, a precursor of 3′-deoxyinosine in chemical synthesis. The products of 2′,3′-anhydroinosine hydrolysis inhibit the formation of 1-phospho-3-deoxyribose during the synthesis of 2-fluorocordycepin. The progress of 2′,3′-anhydroinosine hydrolysis was investigated. The reactions were performed in D2O instead of H2O; this allowed accumulating intermediate substances in sufficient quantities. Two intermediates were isolated and their structures were confirmed by mass and NMR spectroscopy. A mechanism of 2′,3′-anhydroinosine hydrolysis in D2O is fully determined for the first time.


2012 ◽  
Vol 6 (1) ◽  
pp. 506-510 ◽  
Author(s):  
Rory Norris ◽  
Pete Thompson ◽  
Alan Getgood

Anterior cruciate ligament rupture (ACL) is a common injury, particularly among young sporting adults. Early onset osteoarthritis (OA) can be a devastating and difficult to manage consequence of such an injury. The techniques for reconstructing the ACL are advancing all the time, but the effect that this has on the progression of OA is less well understood. Many factors affect the development of OA following an ACL injury, including direct and indirect trauma to the articular cartilage, associated meniscal injuries, chronic tibiofemoral joint instability, and multiple enzymatic pathways. This review will summarize the current evidence surrounding each of these areas, and describe some of the recent developments that may have an impact on the management of these injuries in the future.


ChemInform ◽  
2010 ◽  
Vol 27 (49) ◽  
pp. no-no
Author(s):  
M. M. ORLINSKII

2003 ◽  
Vol 338 (11) ◽  
pp. 1153-1161 ◽  
Author(s):  
Tatiana Ivannikova ◽  
Fabrice Bintein ◽  
Annie Malleron ◽  
Sylvie Juliant ◽  
Martine Cerutti ◽  
...  

1985 ◽  
Vol 63 (8) ◽  
pp. 944-951 ◽  
Author(s):  
David L. Severson ◽  
Thea Fletcher

Enzymatic pathways involved in the metabolism of lysophosphatidylcholine were investigated in rat heart myocardial cells. Acyl CoA-dependent acyltransferase activity was localized in microsomes, and was much greater than lysophospholipase activity in either cytosolic or microsomal fractions. The cytosolic lysophospholipase was more sensitive to inhibition by palmitylcarnitine in comparison to free fatty acids. In contrast, free fatty acids (oleate and palmitate) produced a greater inhibition of the microsomal acyltransferase and lysophospholipase than did palmitylcarnitine. A reduction in the assay pH to 6.5 resulted in an increase in microsomal acyltransferase and cytosolic lysophospholipase activities, but brought about a marked reduction in the microsomal lysophospholipase activity. At pH 6.5, the percentage inhibition of the microsomal acyltransferase by palmitylcarnitine was reduced, whereas the inhibition by palmitic acid was enhanced. The inhibition of the microsomal lysophospholipase by both palmitylcarnitine and palmitic acid was reduced at pH 6.5. With respect to myocardial ischemia, the inhibition of microsomal acyltransferase by free fatty acids and the reduction in microsomal lysophospholipase activity due to acidosis may contribute to the elevation of cellular lysophosphoglycerides which are arrhythmogenic.


1989 ◽  
Vol 17 (11) ◽  
pp. 4412-4412 ◽  
Author(s):  
L.A. Ryabova ◽  
S.A. Ortlepp ◽  
V.I. Baranovp

Sign in / Sign up

Export Citation Format

Share Document