Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture

2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
Prawit Kongjan ◽  
Sompong O-Thong ◽  
Meher Kotay ◽  
Booki Min ◽  
Irini Angelidaki
2011 ◽  
Vol 36 (1) ◽  
pp. 411-420 ◽  
Author(s):  
Nima Nasirian ◽  
Morteza Almassi ◽  
Saeid Minaei ◽  
Renatus Widmann

2010 ◽  
Vol 113-116 ◽  
pp. 1749-1754
Author(s):  
An Ying Jiao ◽  
Yong Feng Li ◽  
Bing Liu ◽  
Kun Liu

Batch culture of dark fermentation was carried out to study the feasibility of biohydrogen production using bagasse as the substrate. In dark fermentation, hydrogen was produced by mixed culture using bagasse as the substrate. To establish favorable conditions for maximum hydrogen production, process parameters such as temperature and initial pH of the medium were investigated. Also, the component of biogas and liquid products of effluent by fermentation were analyzed by gas chromatography. The VFAs were mostly ethanol, acetic acid, propionic acid and butyric acid, and no valeric acid was observed. It is demonstrated that the hydrogen yield reached the maximum of 30.5mlH2/g bagasse while the temperature was 35°C in batch experiments under a series of temperature (25, 30, 35, 40°C) conditions. The initial pH ranged from 6.8 to 8.5, and the yield of hydrogen reached the maximum of 32mlH2/g bagasse with the initial pH of 8.5.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. M. Silva ◽  
A. A. Abreu ◽  
A. F. Salvador ◽  
M. M. Alves ◽  
I. C. Neves ◽  
...  

AbstractThermophilic biohydrogen production by dark fermentation from a mixture (1:1) of C5 (arabinose) and C6 (glucose) sugars, present in lignocellulosic hydrolysates, and from Sargassum sp. biomass, is studied in this work in batch assays and also in a continuous reactor experiment. Pursuing the interest of studying interactions between inorganic materials (adsorbents, conductive and others) and anaerobic bacteria, the biological processes were amended with variable amounts of a zeolite type-13X in the range of zeolite/inoculum (in VS) ratios (Z/I) of 0.065–0.26 g g−1. In the batch assays, the presence of the zeolite was beneficial to increase the hydrogen titer by 15–21% with C5 and C6-sugars as compared to the control, and an increase of 27% was observed in the batch fermentation of Sargassum sp. Hydrogen yields also increased by 10–26% with sugars in the presence of the zeolite. The rate of hydrogen production increased linearly with the Z/I ratios in the experiments with C5 and C6-sugars. In the batch assay with Sargassum sp., there was an optimum value of Z/I of 0.13 g g−1 where the H2 production rate observed was the highest, although all values were in a narrow range between 3.21 and 4.19 mmol L−1 day−1. The positive effect of the zeolite was also observed in a continuous high-rate reactor fed with C5 and C6-sugars. The increase of the organic loading rate (OLR) from 8.8 to 17.6 kg m−3 day−1 of COD led to lower hydrogen production rates but, upon zeolite addition (0.26 g g−1 VS inoculum), the hydrogen production increased significantly from 143 to 413 mL L−1 day−1. Interestingly, the presence of zeolite in the continuous operation had a remarkable impact in the microbial community and in the profile of fermentation products. The effect of zeolite could be related to several properties, including the porous structure and the associated surface area available for bacterial adhesion, potential release of trace elements, ion-exchanger capacity or ability to adsorb different compounds (i.e. protons). The observations opens novel perspectives and will stimulate further research not only in biohydrogen production, but broadly in the field of interactions between bacteria and inorganic materials.


Author(s):  
Miguel A. Medina-Morales ◽  
Luis E. De la Cruz-Andrade ◽  
Lizeth A. Paredes-Peña ◽  
Thelma K. Morales-Martínez ◽  
José A. Rodríguez-De la Garza ◽  
...  

2019 ◽  
Vol 44 (44) ◽  
pp. 24110-24125 ◽  
Author(s):  
Tobias Weide ◽  
Elmar Brügging ◽  
Christof Wetter ◽  
Antonio Ierardi ◽  
Marc Wichern

Sign in / Sign up

Export Citation Format

Share Document