Biohydrogen production by mixed culture of Megasphaera elsdenii with lactic acid bacteria as Lactate-driven dark fermentation

2022 ◽  
Vol 343 ◽  
pp. 126076
Author(s):  
Akihiro Ohnishi ◽  
Yuji Hasegawa ◽  
Naoshi Fujimoto ◽  
Masaharu Suzuki
2010 ◽  
Vol 113-116 ◽  
pp. 1749-1754
Author(s):  
An Ying Jiao ◽  
Yong Feng Li ◽  
Bing Liu ◽  
Kun Liu

Batch culture of dark fermentation was carried out to study the feasibility of biohydrogen production using bagasse as the substrate. In dark fermentation, hydrogen was produced by mixed culture using bagasse as the substrate. To establish favorable conditions for maximum hydrogen production, process parameters such as temperature and initial pH of the medium were investigated. Also, the component of biogas and liquid products of effluent by fermentation were analyzed by gas chromatography. The VFAs were mostly ethanol, acetic acid, propionic acid and butyric acid, and no valeric acid was observed. It is demonstrated that the hydrogen yield reached the maximum of 30.5mlH2/g bagasse while the temperature was 35°C in batch experiments under a series of temperature (25, 30, 35, 40°C) conditions. The initial pH ranged from 6.8 to 8.5, and the yield of hydrogen reached the maximum of 32mlH2/g bagasse with the initial pH of 8.5.


2021 ◽  
Vol 11 ◽  
Author(s):  
Anna Detman ◽  
Daniel Laubitz ◽  
Aleksandra Chojnacka ◽  
Ewa Wiktorowska-Sowa ◽  
Jan Piotrowski ◽  
...  

This study describes the dynamics and complexity of microbial communities producing hydrogen-rich fermentation gas from sugar-beet molasses in five packed-bed reactors (PBRs). The bioreactors constitute a part of a system producing hydrogen from the by-products of the sugar-beet industry that has been operating continuously in one of the Polish sugar factories. PBRs with different working volumes, packing materials, construction and inocula were tested. This study focused on analysis (based on 16S rRNA profiling and shotgun metagenomics sequencing) of the microbial communities selected in the PBRs under the conditions of high (>100 cm3/g COD of molasses) and low (<50 cm3/g COD of molasses) efficiencies of hydrogen production. The stability and efficiency of the hydrogen production are determined by the composition of dark fermentation microbial communities. The most striking difference between the tested samples is the ratio of hydrogen producers to lactic acid bacteria. The highest efficiency of hydrogen production (130–160 cm3/g COD of molasses) was achieved at the ratios of HPB to LAB ≈ 4:2.5 or 2.5:1 as determined by 16S rRNA sequencing or shotgun metagenomics sequencing, respectively. The most abundant Clostridium species were C. pasteurianum and C. tyrobutyricum. A multiple predominance of LAB over HPB (3:1–4:1) or clostridia over LAB (5:1–60:1) results in decreased hydrogen production. Inhibition of hydrogen production was illustrated by overproduction of short chain fatty acids and ethanol. Furthermore, concentration of ethanol might be a relevant marker or factor promoting a metabolic shift in the DF bioreactors processing carbohydrates from hydrogen-yielding toward lactic acid fermentation or solventogenic pathways. The novelty of this study is identifying a community balance between hydrogen producers and lactic acid bacteria for stable hydrogen producing systems. The balance stems from long-term selection of hydrogen-producing microbial community, operating conditions such as bioreactor construction, packing material, hydraulic retention time and substrate concentration. This finding is confirmed by additional analysis of the proportions between HPB and LAB in dark fermentation bioreactors from other studies. The results contribute to the advance of knowledge in the area of relationships and nutritional interactions especially the cross-feeding of lactate between bacteria in dark fermentation microbial communities.


2013 ◽  
Vol 26 (2) ◽  
pp. 273-279 ◽  
Author(s):  
Ming Yang ◽  
Jung Soon Kwak ◽  
Seri Jang ◽  
Yuan Jia ◽  
Inshik Park

2000 ◽  
Vol 66 (5) ◽  
pp. 2216-2219 ◽  
Author(s):  
Guenolee Prioult ◽  
Christophe Lacroix ◽  
Carl Turcotte ◽  
Ismaïl Fliss

ABSTRACT An immunofluorescent method involving double color labeling and confocal microscopy was reported to specifically detect lactic acid bacteria and probiotic cells coimmobilized in gels beads. The method described is rapid (4 h) and sensitive and may be useful for studying cell dynamics during mixed-culture starter production using immobilized cells in gel beads. Microscopic observations were perfectly correlated to cell counts obtained using a sandwich enzyme-linked immunosorbent assay.


2018 ◽  
Vol 65 (2) ◽  
pp. 55-62
Author(s):  
Miyo Hiwatashi ◽  
Futaba Amano ◽  
Tetsuya Kondo ◽  
Takeo Kato

Sign in / Sign up

Export Citation Format

Share Document