scholarly journals Biodegradable and Biocompatible Graphene‐based Scaffolds for Functional Neural Tissue Engineering: A Strategy Approach Using Dental Pulp Stem Cells and Biomaterials

Author(s):  
Negar Mansouri ◽  
Said Al‐Sarawi ◽  
Dusan Losic ◽  
Jagan Mazumdar ◽  
Jillian Clark ◽  
...  
2021 ◽  
Author(s):  
Negar Mansouri ◽  
Said Al-Sarawi ◽  
Dusan Losic ◽  
Jagan Mazumdar ◽  
Jillian Clark ◽  
...  

AbstractNeural tissue engineering aims to restore function of nervous system tissues using biocompatible cell-seeded scaffolds. Graphene-based scaffolds combined with stem cells deserve special attention to enhance tissue regeneration in a controlled manner. However, it is believed that minor changes in scaffold biomaterial com-position, internal porous structure, and physicochemical properties can impact cellular growth and adhesion. The current work aims to investigate in vitro biological effects of 3D graphene oxide (GO)/sodium alginate (GOSA) and reduced GOSA (RGOSA) scaffolds on dental pulp stem cells (DPSCs) in terms of cell viability and cytotoxicity. Herein, the effects of the 3D scaffolds, coating conditions, and serum supplementation on DPSCs functions are explored extensively. Biodegradation analysis revealed that addition of GO enhanced the degradation rate of composite scaffolds. Compared to the 2D surface, the cell viability of 3D scaffolds was higher (p <0.0001), highlighting the optimal initial cell adhesion to the scaffold surface and cell migration through pores. Moreover, the cytotoxicity study indicated that the incorporation of graphene supported higher DPSCs viability. It is also shown that when the mean pore size of scaffold increases, DPSCs activity decreases. In terms of coating conditions, poly-l-lysine (PLL) was the most robust coating reagent that improved cell-scaffold adherence and DPSCs metabolism activity. The cytotoxicity of GO-based scaffolds showed that DPSCs can be seeded in serum-free media without cytotoxic effects. This is critical for human translation as cellular transplants are typically serum-free. These findings suggest that proposed 3D GO-based scaffolds have favourable effects on the biological responses of DPSCs.


Author(s):  
Negar Mansouri ◽  
Said Al-Sarawi ◽  
Dusan Losic ◽  
Jagan Mazumdar ◽  
Jillian Clark ◽  
...  

Neural tissue engineering aims to restore function of nervous system tissues using biocompatible cell-seeded scaffolds. Graphene-based scaffolds combined with stem cells deserve special attention to enhance tissue regeneration in a controlled manner. However, it is believed that minor changes in scaffold biomaterial composition, internal porous structure, and physicochemical properties can impact cellular growth and adhesion. The current work aims to investigate in vitro biological effects of 3D graphene oxide (GO)/sodium alginate (GOSA) and reduced GOSA (RGOSA) scaffolds on dental pulp stem cells (DPSCs) in terms of cell viability and cytotoxicity. Herein, the effects of the 3D scaffolds, coating conditions, and serum supplementation on DPSCs functions are explored extensively. Biodegradation analysis revealed that addition of GO enhanced the degradation rate of composite scaffolds. Compared to the 2D surface, the cell viability of 3D scaffolds was higher (p <0.0001), highlighting the optimal initial cell adhesion to the scaffold surface and cell migration through pores. Moreover, the cytotoxicity study indicated that the incorporation of graphene supported higher DPSCs viability. It is also shown that when the mean pore size of scaffold increases, DPSCs activity decreases. In terms of coating conditions, poly-l-lysine (PLL) was the most robust coating reagent that improved cell-scaffold adherence and DPSCs metabolism activity. The cytotoxicity of GO-based scaffolds showed that DPSCs can be seeded in serum-free media without cytotoxic effects. This is critical for human translation as cellular transplants are typically serum-free. These findings suggest that proposed 3D GO-based scaffolds have favourable effects on the biological responses of DPSCs.


2021 ◽  
Author(s):  
Haiyun Luo ◽  
Wenjing Liu ◽  
Yanli Zhang ◽  
Xiao Jiang ◽  
Shiqing Wu ◽  
...  

Abstract Background: Dental pulp stem cells (DPSCs) exhibited self-renewal, pluripotency capacity and served as promising cells source in endodontic regeneration and tissue engineering. Meanwhile, the regenerative capacity of DPSCs is limited and reduced in long lifespan. N6-methyladenosine (m6A) is the most prevalent, reversible internal modification in RNAs. The methyltransferases complex and demethylases mediated m6A methylation and cooperated to impact various biological processes associated with stem cell fate determination. However, the biological effect of m6A methylation in DPSCs remained unclear. Methods: Cell surface markers and differentiation potential of primary DPSCs were identified and m6A immunoprecipitation with deep sequencing (m6A RIP-seq) was used to uncover characteristics of m6A modifications in DPSCs transcriptome. Expression level of m6A-related genes were evaluated in immature/mature pulp tissues and cells. Lentiviral vectors were constructed to knockdown or overexpress methyltransferase like 3 (METTL3). Cell morphology, viability, senescence and apoptosis were further analyzed by β-galactosidase, TUNEL staining and flow cytometry. Bioinformatic analysis combing m6A RIP and shMETTL3 RNA-seq was used to functionally enrich overlapped genes and screen target of METTL3. Cell cycle distributions were assayed by flow cytometry and m6A RIP-qPCR was used to confirm METTL3 mediated m6A methylation in DPSCs. Results: Here, m6A peaks distribution, binding area and motif in DPSCs were first revealed by m6A RIP-seq. We also found a relative high expression level of METTL3 in immature DPSCs with superior regenerative potential and METTL3 knockdown induced cell apoptosis and senescence. Furthermore, Conjoint analysis of m6A RIP and RNA-sequencing showed differentially expressed genes affected by METTL3 depletion was mainly enriched in cell cycle, mitosis and alteration of METTL3 expression resulted in cell cycle arrest which indicated METTL3 make essential effect in cell cycle control. To further investigate underlying mechanisms, we explored proteins interaction network of differentially expressed genes and Polo-like Kinase 1 (PLK1), a critical cycle modulator was identified as target of METTL3-mediated m6A methylation in DPSCs. Conclusions: These results revealed m6A methylated hallmarks in DPSCs and a regulatory role of METTL3 in cell cycle control. Our study shed light on therapeutic approaches in vital pulp therapy and serve new insight in stem cells based tissue engineering.


Author(s):  
Zavan Barbara ◽  
Bressan Eriberto ◽  
Sivolella Stefano ◽  
Brunello Giulia ◽  
Gardin Chiara ◽  
...  

2017 ◽  
Vol 81 ◽  
pp. 104-112 ◽  
Author(s):  
Katherine Hafner ◽  
Dallas Montag ◽  
Hannah Maeser ◽  
Congyue Peng ◽  
William R. Marcotte ◽  
...  

2010 ◽  
Vol 150 ◽  
pp. 469-470
Author(s):  
D. D’Angelo ◽  
I. Armentano ◽  
R. Tiribuzi ◽  
S. Mattioli ◽  
U. Reale ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Bing Song ◽  
Wenkai Jiang ◽  
Amr Alraies ◽  
Qian Liu ◽  
Vijay Gudla ◽  
...  

Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document