Influence of p -Type Double-Doping on the Crystals and Electronic Structures of Two Polar Intermetallics: La4.57(1) Li0.43 Ge3.80(3) In0.20 and Nd4.32(1) Li0.68 Ge3.87(3) In0.13

2018 ◽  
Vol 39 (9) ◽  
pp. 1066-1072 ◽  
Author(s):  
Jieun Jeon ◽  
Junsu Lee ◽  
Tae-Soo You
2014 ◽  
Vol 116 (4) ◽  
pp. 044306 ◽  
Author(s):  
Yuting Peng ◽  
Congxin Xia ◽  
Heng Zhang ◽  
Tianxing Wang ◽  
Shuyi Wei ◽  
...  

2003 ◽  
Vol 769 ◽  
Author(s):  
YongWoo Choi ◽  
Ioannis Kymissis ◽  
Annie Wang ◽  
Akintunde I. Akinwande

AbstractTextiles are a suitable substrate for large area, flexible and wearable electronics because of their excellent flexibility, mechanical properties and low cost manufacturability. The ability to fabricate active devices on fiber is a key step for achieving large area and flexible electronic structures. We fabricated transistors and inverters with a-Si film and pentacene film on Kapton film and cut them into fibers. The a-Si TFT showed a threshold voltage of 8.5 V and on/off ratio of 103 at a drain voltage of 10 V. These are similar to the characteristics of a TFT fabricated on a glass substrate at the same time. The maximum gain of the inverter with an enhancement n-type load was 6.45 at a drain voltage of 10 V. The pentacene OTFT showed a threshold voltage of -8 V and on/off ratio of 103 at a drain voltage of -30 V. The inverter with a depletion p-type load showed a voltage inversion but the inversion occurred at the wrong voltage. The antifuse was successfully programmed with a voltage pulse and also a current pulse. The resistance decreased from 10 GΩ to 2 kΩ after the programming.


2017 ◽  
Vol 43 (8) ◽  
pp. 6117-6123 ◽  
Author(s):  
Yazhou Sun ◽  
Cencen Zhang ◽  
Chengming Cao ◽  
Jianxin Fu ◽  
Liangming Peng

2021 ◽  
Author(s):  
Thomas Bathe ◽  
Chuan-Ding Dong ◽  
Stefan Schumacher

Double doping, in which a single dopant molecule induces two charge carriers in an organic semiconductor (OSC), was recently experimentally observed and promises to enhance the efficiency of molecular doping. Here we present a theoretical investigation of p-type molecular double doping in a CN6-CP:bithiophene–thienothiophene OSC system. Our analysis is based on density functional theory (DFT) calculations for the electronic ground state. In a molecular complex with two OSC oligomers and one CN6-CP dopant molecule we explicitly demonstrate double integer charge transfer and find formation of two individual polarons on the OSC molecules and a di-anion dopant molecule. We show that the vibrational modes and related infrared absorption spectrum of this complex can be traced back to those of the charged dopant and OSC molecules in their isolated forms. The near-infrared optical absorption spectrum calculated by time-dependent DFT shows both features of typical intra-molecular polaron excitations and weak inter-molecular charge transfer excitations associated with the doping-induced polaron states.


Author(s):  
Masato Yamaguchi ◽  
Daishi Shiojiri ◽  
Tsutomu Iida ◽  
Naomi Hirayama ◽  
Yoji IMAI

Abstract The narrow-gap semiconductor α-SrSi2 is a promising candidate for low-temperature thermoelectric applications with low environmental load. The only experimental report in which α-SrSi2 is reported to have n-type conductivity is one where it had been doped with yttrium. To further clarify the effects of impurities, theoretical studies are needed. The α-SrSi2 has a very narrow band gap (~13–35 meV), causing difficulties in the accurate calculation of the electronic and thermoelectric properties. In our previous study, we overcame this problem for undoped α-SrSi2 using hybrid functional theory. We used this method in this study to investigate the structures, energetic stabilities, electronic structures, and thermoelectric properties of Y-doped α-SrSi2. The results indicate that substitution at Sr-sites is energetically about two times more stable than that at Si-sites. Furthermore, negative Seebeck coefficients were obtained at low temperatures and reverted to p-type with increasing temperature, which is consistent with the experimental results.


1996 ◽  
Vol 426 ◽  
Author(s):  
T. Yamamoto ◽  
H. Katayama-Yoshida

AbstractWe have studied the electronic structures of CuIn(S0.875X0.125)2 (X=B, C, N, Si or P) based on the ab-initio electronic band structure calculations using the augmented spherical wave (ASW) method. We have clarified that the physical characteristics of the p-type doped CuInS2 crystals are mainly determined by a change in the strength of interactions between Cu and S atoms. On the basis of the calculated results, we discussed the material design considerations, such as controlling the strength of resistivity for p-type doped CulnS2 materials and converting the conduction type, from n-type to p-type by a codoping method.


RSC Advances ◽  
2016 ◽  
Vol 6 (63) ◽  
pp. 58325-58328
Author(s):  
Yuping Wang ◽  
Zhenduo Geng

N substituting for a S atom may offer effective p-type carriers in ZrS2 nanosheets and be realized under Zr-rich experimental conditions.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5161
Author(s):  
Chuanyu Zhang ◽  
Zhibing Li ◽  
Weiliang Wang

As a promising third-generation semiconductor, β-Ga2O3 is facing bottleneck for its p-type doping. We investigated the electronic structures and the stability of various Cu doped structures of β-Ga2O3. We found that Cu atoms substituting Ga atoms result in p-type conductivity. We derived the temperature and absolute oxygen partial pressure dependent formation energies of various doped structures based on first principles calculation with dipole correction. Then, the critical thermodynamic condition for forming the abovementioned substitutional structure was obtained.


Sign in / Sign up

Export Citation Format

Share Document