Tunable electronic structures of p-type Mg doping in AlN nanosheet

2014 ◽  
Vol 116 (4) ◽  
pp. 044306 ◽  
Author(s):  
Yuting Peng ◽  
Congxin Xia ◽  
Heng Zhang ◽  
Tianxing Wang ◽  
Shuyi Wei ◽  
...  
2007 ◽  
Vol 1040 ◽  
Author(s):  
Enno Malguth ◽  
Axel Hoffmann ◽  
Wolfgang Gehlhoff ◽  
Matthew H. Kane ◽  
Ian T. Ferguson

AbstractIn the context of the pursuit of a dilute magnetic semiconductor for spintronic applications, a set of GaMnN samples with varying Mn concentration and Si or Mg co-doping was investigated by optical and electron spin resonance spectroscopy. The results clearly demonstrate how the charge state of Mn is changed between 2+, 3+ and 4+ by Mg and Si co-doping. For p-type GaMnN we show that the introduction of the Mn3+/4+ donor can be compensated by Mg co-doping lowering the Fermi energy below the Mn3+/4+ level. While our results are in agreement with the hypothesis that the infrared photoluminescence appearing in GaMnN upon Mg doping originates from Mn4+, an unambiguous proof is still to be presented. Under this assumption, our measurements show that the Mn4+ center must be excited via an extra-center process at 2.54 eV.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5339
Author(s):  
Lian Zhang ◽  
Rong Wang ◽  
Zhe Liu ◽  
Zhe Cheng ◽  
Xiaodong Tong ◽  
...  

This work studied the regulation of hole concentration and mobility in p-InGaN layers grown by metalorganic chemical vapor deposition (MOCVD) under an N-rich environment. By adjusting the growth temperature, the hole concentration can be controlled between 6 × 1017/cm3 and 3 × 1019/cm3 with adjustable hole mobility from 3 to 16 cm2/V.s. These p-InGaN layers can meet different requirements of devices for hole concentration and mobility. First-principles defect calculations indicate that the p-type doping of InGaN at the N-rich limiting condition mainly originated from Mg substituting In (MgIn). In contrast with the compensation of nitrogen vacancy in p-type InGaN grown in a Ga-rich environment, the holes in p-type InGaN grown in an N-rich environment were mainly compensated by interstitial Mg (Mgi), which has very low formation energy.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2376 ◽  
Author(s):  
Song-Sheng Lin ◽  
Qian Shi ◽  
Ming-Jiang Dai ◽  
Kun-Lun Wang ◽  
Sheng-Chi Chen ◽  
...  

CuCrO2 is one of the most promising p-type transparent conductive oxide (TCO) materials. Its electrical properties can be considerably improved by Mg doping. In this work, Cr-deficient CuCrO2 thin films were deposited by reactive magnetron sputtering based on 5 at.% Mg doping. The influence of Cr deficiency on the film’s optoelectronic properties was investigated. As the film’s composition varied, CuO impurity phases appeared in the film. The mixed valency of Cu+/Cu2+ led to an enhancement of the hybridization between the Cu3d and O2p orbitals, which further reduced the localization of the holes by oxygen. As a result, the carrier concentration significantly improved. However, since the impurity phase of CuO introduced more grain boundaries in Cu[Cr0.95−xMg0.05]O2, impeding the transport of the carrier and incident light in the film, the carrier mobility and the film’s transmittance reduced accordingly. In this work, the optimal optoelectronic performance is realized where the film’s composition is Cu[Cr0.78Mg0.05]O2. Its Haacke’s figure of merit is about 1.23 × 10−7 Ω−1.


2020 ◽  
Vol 1 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Xinjia Qiu ◽  
Yingda Chen ◽  
Enze Han ◽  
Zesheng Lv ◽  
Zhiyuan Song ◽  
...  
Keyword(s):  

High doping efficiency of the Mg dopant in Al-rich AlGaN is highly desired for AlGaN based deep ultraviolet optoelectronics.


Sign in / Sign up

Export Citation Format

Share Document