Electronic structures of p-type impurity in ZrS2 monolayer

RSC Advances ◽  
2016 ◽  
Vol 6 (63) ◽  
pp. 58325-58328
Author(s):  
Yuping Wang ◽  
Zhenduo Geng

N substituting for a S atom may offer effective p-type carriers in ZrS2 nanosheets and be realized under Zr-rich experimental conditions.

2014 ◽  
Vol 116 (4) ◽  
pp. 044306 ◽  
Author(s):  
Yuting Peng ◽  
Congxin Xia ◽  
Heng Zhang ◽  
Tianxing Wang ◽  
Shuyi Wei ◽  
...  

1982 ◽  
Vol 16 ◽  
Author(s):  
A. Musa ◽  
J.P. Ponpon ◽  
M. Hage-Ali

ABSTRACTOhmic and rectifying contacts on high resistivity etched P-type cadmium telluride have been studied in order to produce diode structures.For this,we have first investigated the properties of gold contacts obtained by chemical reactions of CdTe dippedin gold chloride.Both electrical characterization and structure have been analyzed as a function of the experimental conditions of the contact deposition.The results can be interpreted in terms of a current flow enhanced by tunnelling through the Au-CdTe junction and related to the structure of the interface a few tens of nanometer below the gold contact. In addition,several rectifying contacts have been investigated , in order to achieve a structure having low leakage current.


2018 ◽  
Vol 32 (07) ◽  
pp. 1850092 ◽  
Author(s):  
Dandan Li ◽  
Juan Du ◽  
Qian Zhang ◽  
Congxin Xia ◽  
Shuyi Wei

Through first-principles calculations we study the electronic structures and optical properties of two-dimensional (2D) Sn[Formula: see text]Ti(Zr)[Formula: see text]S2 alloys. The results indicate that the band gap value of Sn[Formula: see text]Ti(Zr)[Formula: see text]S2 alloys is decreased continuously when Ti(Zr) concentration is increased, which is very beneficial to optoelectronic devices applications. Moreover, the static dielectric constant is increased when the Ti(Zr) concentration is increased in the 2D Sn[Formula: see text]Ti(Zr)[Formula: see text]S2 alloys. In addition, we also calculate the imaginary part [Formula: see text] dispersion of Sn[Formula: see text]Ti(Zr)[Formula: see text]S2 alloys along the plane with different Ti(Zr) concentrations. The threshold energy values decrease with increasing Ti(Zr) concentrations in the Sn[Formula: see text]Ti(Zr)[Formula: see text]S2 ternary alloys. Moreover, the calculations of formation energy also indicate that these 2D alloys can be fabricated under some experimental conditions. These results suggest that Ti(Zr) substituting Sn atom is an efficient way to tune the band gap and optical properties of 2D SnS2 nanosheets.


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 338 ◽  
Author(s):  
Lucio Bonaccorsi ◽  
Angela Malara ◽  
Andrea Donato ◽  
Nicola Donato ◽  
Salvatore Gianluca Leonardi ◽  
...  

In this study, UV irradiation was used to improve the response of indium oxide (In2O3) used as a CO sensing material for a resistive sensor operating in a low temperature range, from 25 °C to 150 °C. Different experimental conditions have been compared, varying UV irradiation mode and sensor operating temperature. Results demonstrated that operating the sensor under continuous UV radiation did not improve the response to target gas. The most advantageous condition was obtained when the UV LED irradiated the sensor in regeneration and was turned off during CO detection. In this operating mode, the semiconductor layer showed an apparent “p-type” behavior due to the UV irradiation. Overall, the effect was an improvement of the indium oxide response at 100 °C toward low CO concentrations (from 1 to 10 ppm) that showed higher results than in the dark, which is promising to extend the detection of CO with an In2O3-based sensor in the sub-ppm range.


2003 ◽  
Vol 769 ◽  
Author(s):  
YongWoo Choi ◽  
Ioannis Kymissis ◽  
Annie Wang ◽  
Akintunde I. Akinwande

AbstractTextiles are a suitable substrate for large area, flexible and wearable electronics because of their excellent flexibility, mechanical properties and low cost manufacturability. The ability to fabricate active devices on fiber is a key step for achieving large area and flexible electronic structures. We fabricated transistors and inverters with a-Si film and pentacene film on Kapton film and cut them into fibers. The a-Si TFT showed a threshold voltage of 8.5 V and on/off ratio of 103 at a drain voltage of 10 V. These are similar to the characteristics of a TFT fabricated on a glass substrate at the same time. The maximum gain of the inverter with an enhancement n-type load was 6.45 at a drain voltage of 10 V. The pentacene OTFT showed a threshold voltage of -8 V and on/off ratio of 103 at a drain voltage of -30 V. The inverter with a depletion p-type load showed a voltage inversion but the inversion occurred at the wrong voltage. The antifuse was successfully programmed with a voltage pulse and also a current pulse. The resistance decreased from 10 GΩ to 2 kΩ after the programming.


2007 ◽  
Vol 546-549 ◽  
pp. 1345-1348
Author(s):  
Hong Qiang Du ◽  
Su Gui Tian ◽  
Xing Fu Yu ◽  
Ming Gang Wang ◽  
Fan Lai Meng

By means of pre-compressive stress treated, the cubic γ΄ phase in alloy is transformed into the P-type structure along the direction parallel to the applied stress axis. The influence of the P-type structure on the creep lifetimes of alloy has been investigated by means of the tensile creep testing and microstructure observation. Results show that, compared with the A structure alloy, the P-type γ′ rafted alloy displays a shorter creep lifetimes under the experimental conditions. The microstructure evolution of the P-type structure alloy occurs during tensile creep, in which the p-type γ′ rafted phase is transformed into the N-type structure. The microstructure evolution alloy reduces the creep resistance of the alloy, this is one of the main reasons for reducing the creep resistance of the one.


2017 ◽  
Vol 43 (8) ◽  
pp. 6117-6123 ◽  
Author(s):  
Yazhou Sun ◽  
Cencen Zhang ◽  
Chengming Cao ◽  
Jianxin Fu ◽  
Liangming Peng

Author(s):  
Masato Yamaguchi ◽  
Daishi Shiojiri ◽  
Tsutomu Iida ◽  
Naomi Hirayama ◽  
Yoji IMAI

Abstract The narrow-gap semiconductor α-SrSi2 is a promising candidate for low-temperature thermoelectric applications with low environmental load. The only experimental report in which α-SrSi2 is reported to have n-type conductivity is one where it had been doped with yttrium. To further clarify the effects of impurities, theoretical studies are needed. The α-SrSi2 has a very narrow band gap (~13–35 meV), causing difficulties in the accurate calculation of the electronic and thermoelectric properties. In our previous study, we overcame this problem for undoped α-SrSi2 using hybrid functional theory. We used this method in this study to investigate the structures, energetic stabilities, electronic structures, and thermoelectric properties of Y-doped α-SrSi2. The results indicate that substitution at Sr-sites is energetically about two times more stable than that at Si-sites. Furthermore, negative Seebeck coefficients were obtained at low temperatures and reverted to p-type with increasing temperature, which is consistent with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document