High glucose condition limited the angiogenic/cardiogenic capacity of murine cardiac progenitor cells in in vitro and in vivo milieu

2018 ◽  
Vol 36 (7) ◽  
pp. 346-356 ◽  
Author(s):  
Majid Khaksar ◽  
Mansour Sayyari ◽  
Jafar Rezaie ◽  
Ayda Pouyafar ◽  
Soheila Montazersaheb ◽  
...  
2015 ◽  
Vol 53 (7) ◽  
pp. 4972-4980 ◽  
Author(s):  
Yao-Wu Liu ◽  
Liang Zhang ◽  
Yu Li ◽  
Ya-Qin Cheng ◽  
Xia Zhu ◽  
...  

2018 ◽  
Vol 7 (5) ◽  
pp. 362-372 ◽  
Author(s):  
Y. Ueda ◽  
A. Inui ◽  
Y. Mifune ◽  
R. Sakata ◽  
T. Muto ◽  
...  

ObjectivesThe aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy.MethodsUsing tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined.ResultsIn tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased.ConclusionThis study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2


2021 ◽  
Vol 22 (3) ◽  
pp. 1390
Author(s):  
Julia Mester-Tonczar ◽  
Patrick Einzinger ◽  
Johannes Winkler ◽  
Nina Kastner ◽  
Andreas Spannbauer ◽  
...  

Circular RNAs (circRNAs) are crucial in gene regulatory networks and disease development, yet circRNA expression in myocardial infarction (MI) is poorly understood. Here, we harvested myocardium samples from domestic pigs 3 days after closed-chest reperfused MI or sham surgery. Cardiac circRNAs were identified by RNA-sequencing of rRNA-depleted RNA from infarcted and healthy myocardium tissue samples. Bioinformatics analysis was performed using the CIRIfull and KNIFE algorithms, and circRNAs identified with both algorithms were subjected to differential expression (DE) analysis and validation by qPCR. Circ-RCAN2 and circ-C12orf29 expressions were significantly downregulated in infarcted tissue compared to healthy pig heart. Sanger sequencing was performed to identify the backsplice junctions of circular transcripts. Finally, we compared the expressions of circ-C12orf29 and circ-RCAN2 between porcine cardiac progenitor cells (pCPCs) that were incubated in a hypoxia chamber for different time periods versus normoxic pCPCs. Circ-C12orf29 did not show significant DE in vitro, whereas circ-RCAN2 exhibited significant ischemia-time-dependent upregulation in hypoxic pCPCs. Overall, our results revealed novel cardiac circRNAs with DE patterns in pCPCs, and in infarcted and healthy myocardium. Circ-RCAN2 exhibited differential regulation by myocardial infarction in vivo and by hypoxia in vitro. These results will improve our understanding of circRNA regulation during acute MI.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Pratik A Lalit ◽  
Max R Salick ◽  
Daryl O Nelson ◽  
Jayne M Squirrell ◽  
Christina M Shafer ◽  
...  

Several studies have reported reprogramming of fibroblasts (Fibs) to induced cardiomyocytes, and we have recently reprogrammed mouse Fibs to induced cardiac progenitor cells (iCPCs), which may be more favorable for cardiac repair because of their expandability and multipotency. Adult cardiac (AC), lung and tail-tip Fibs from an Nkx2.5-EYFP reporter mouse were reprogrammed using a combination of five defined factors into iCPCs. Transcriptome and immunocytochemistry analysis revealed that iCPCs were cardiac mesoderm-restricted progenitors that expressed CPC markers including Nkx2.5, Gata4, Irx4, Tbx5, Cxcr4, Flk1 etc. iCPCs could be extensively expanded (over 30 passages) while maintaining multipotency to differentiate in vitro into cardiac lineage cells including cardiomyocytes (CMs), smooth muscle cells and endothelial cells. iCPC derived CMs upon co-culture with mESC-derived CMs formed intercellular gap junctions, exhibited calcium transients, and contractions. The purpose of this study was to determine the in vivo potency of iCPCs. Given that the Nkx2.5-EYFP reporter identifies embryonic CPCs, we first tested the embryonic potency of iCPCs using an ex vivo whole embryo culture model injecting cells into the cardiac crescent (CC) of E8.5 mouse embryos and culturing for 24 to 48 hours. GFP labeled AC Fibs were first tested and live imaging revealed that after 24 hours these cells were rejected from the embryo proper and localized to the ecto-placental cone. In contrast, iCPCs reprogrammed from AC Fibs when injected into the CC localized to the developing heart tube and differentiated into MLC2v, αMHC and cardiac actin expressing CMs. Further we injected iCPCs into infarcted adult mouse hearts and determined their regenerative potential after 1-4 wks. The iCPCs significantly improved survival (p<0.01 Mantel-Cox test) in treated animals (75%) as compared to control (11%). Immunohistochemistry revealed that injected iCPCs localized to the scar area and differentiated into cardiac lineage cells including CMs (cardiac actin). These results indicate that lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for cardiac regenerative therapy as well as drug discovery and disease modeling.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Liu Yang ◽  
Yang Yu ◽  
Baron Arnone ◽  
Chan Boriboun ◽  
Jiawei Shi ◽  
...  

Background: Long non-coding RNAs (lncRNAs) are an emerging class of RNAs with no or limited protein-coding capacity; a few of which have recently been shown to regulate critical biological processes. Myocardial infarction-associated transcript (MIAT) is a conserved mammalian lncRNA, and single nucleotide polymorphisms (SNPs) in 6 loci of this gene have been identified to be strongly associated with the incidence and severity of human myocardial infarction (MI). However, whether and how MIAT impacts on the pathogenesis of MI is unknown. Methods & Results: Quantitative RT-PCR analyses revealed that MIAT is expressed in neonatal mouse heart and to a lesser extent in adult heart. After surgical induction of MI in adult mice, MIAT starts to increase in 2 hours, peaks at 6 hours in atria and 12 hours in ventricles, and decreases to baseline at 24 hours. Fluorescent in situ hybridization (FISH) revealed a slight increase in the number of MIAT-expressing cells in the infarct border zone at 12 hours post-MI. Moreover, qRT-PCR analyses of isolated cardiac cells revealed that MIAT is predominantly expressed in cardiosphere-derived cardiac progenitor cells (CPCs). Treatment of CPCs with H 2 O 2 led to a marked upregulation of MIAT, while knockdown (KD) of MIAT resulted in a significantly impaired cell survival in vitro with H 2 O 2 treatment and in vivo after administered in the ischemic/reperfused heart. Notably, bioinformatics prediction and RNA immunoprecipitation identified FUS (fused in sarcoma) as a novel MIAT-interacting protein. FUS-KD CPCs displayed reduced cell viability and increased apoptosis under oxidative stress. Furthermore, MIAT overexpression enhanced survival of WT CPCs but not FUS-KD CPCs, suggesting that the protective role of MIAT is mediated by FUS. Conclusions: MIAT interacts with FUS to protect CPCs from oxidative stress-induced cell death.


2018 ◽  
Vol 64 (14) ◽  
pp. 79
Author(s):  
Ali Furkan Gümüş ◽  
Semiha Dede ◽  
Veysel Yuksek ◽  
Sedat Çetin ◽  
Mehmet Taşpınar

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Maria P Zafiriou ◽  
Claudia Noack ◽  
Michael Didie ◽  
Bernhard Unsoeld ◽  
Ali El-Armouche ◽  
...  

Erythropoietin (Epo) was shown to improve cardiac function following ischemia reperfusion mainly via neo-angiogenesis and anti-apoptotic mechanisms. We found EpoR expression to be particularly high in adult cardiac progenitor cells (CPCs). Thus, we reasoned that Epo may play a role in the biology of these cells. We isolated CPCs from adult C57BL/6 hearts by enzymatic digestion and filtration (pore size: 30 µm). By means of immunofluorescence microscopy (IF) and flow cytometry (FC) we analyzed EpoR expression in the CPCs. 24±3% of the investigated cardiac cells were positive for EpoR with 3±2% of these being c-kit+ and 28%±2% Sca-1+. 52% of the EpoR+ cells expressed endothelial cell markers (40±2% CD34+, 9±2% FLK1+). 42±4% expressed myocyte markers (αMHC+, cTNT+). IF revealed a progenitor-like population with immature cell morphology and proliferation potential (ki67+). Cell cycle analysis showed an enrichment of αMHC+ EpoR+ cells in S and G2 phase (49±7%, n=3) as compared to the αMHC- EpoR- population (13±3%, n=3). Moreover, we tested the effect of Epo in the biology of these CPCs in vitro. At d14 we observed a two-fold increase of GATA4+ and cTnT+ cardiac cells in the co-cultures treated with Epo (n=3). CPC cycle arrest abrogated the aforementioned effects, suggesting that Epo influences mainly CPC proliferation. Finally, we tested the potential of Epo to protect against ischemia by inducing the proliferation of these αMHC+ CPCs in vivo in a myocardial infarction (MI) model. 4 weeks post MI, echocardiography did not reveal a significant functional improvement of the Epo receiving mice (2x, 2U/g Epo i.p). Nevertheless, FC analysis of the progenitor pool showed a significant augmentation of αMHC+ and cTnT+ cells (Sham: 19±3% vs Epo 35±3%, n=5; MI: 10.6±2.3%, n=6 vs Epo 20.3±1.9%, n=8). These data suggest an activation of myogenic progenitors by Epo, despite the lack of apparent regeneration under the investigated conditions. In conclusion, we found that EpoR is expressed in a putative cardiomyogenic progenitor cell pool in the adult heart. Epo drives their proliferation in vitro and in vivo even upon acute cardiac injury. We are currently investigating the long-term consequences of the observed progenitor cell activation in models of chronic ischemic injury.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Eva Ludvigsen ◽  
Mats Stridsberg ◽  
Eva T. Janson ◽  
Stellan Sandler

Somatostatin acts via five receptors (sst1-5). We investigated if the changes in pancreatic islet sst expression in diabetic NOD mice compared to normoglycemic mice are a consequence of hyperglycemia or the ongoing immune reaction in the pancreas. Pancreatic islets were isolated from NOD mice precultured for 5 days and further cultured for 3 days at high or low glucose before examined. Islets were also isolated from NOD mice and transplanted to normal or diabetic mice in a number not sufficient to cure hyperglycemia. After three days, the transplants were removed and stained for sst1-5and islet hormones. Overall, changes in sst islet cell expression were more common in islets cultured in high glucose concentrationin vitroas compared to the islet transplantationin vivoto diabetic mice. The beta and PP cells exhibited more frequent changes in sst expression, while the alpha and delta cells were relatively unaffected by the high glucose condition. Our findings suggest that the glucose level may alter sst expressed in islets cells; however, immune mechanisms may counteract such changes in islet sst expression.


Sign in / Sign up

Export Citation Format

Share Document