Demonstration of exogenous nuclear histone H3 binding to mitochondria and subsequent cytochrome c release in cauliflower

2019 ◽  
Vol 43 (11) ◽  
pp. 1323-1329
Author(s):  
Linda A. Major ◽  
Roger Sauterer
Crustaceana ◽  
2018 ◽  
Vol 91 (1) ◽  
pp. 85-101 ◽  
Author(s):  
Akihiro Yoshikawa ◽  
Tomoyuki Nakano ◽  
Takashi P. Satoh ◽  
Akira Asakura

During our survey on the intertidal hermit crab fauna on Amami Oshima Island and Okinawa Island, southwestern Japan, we collected specimens identified asClibanariusspecies by their morphological features, but that had an unknown coloration for the genus: they have whitish ambulatory legs and a whitish shield. For species identification of these specimens, we observed their coloration and morphology and also performed phylogenetic analyses using the genes mitochondrial cytochrome c oxidase I (COI) and nuclear histone H3. The analysis has shown that these specimens are to be identified asClibanarius virescens(Krauss, 1843).


2007 ◽  
Vol 30 (4) ◽  
pp. 97 ◽  
Author(s):  
A Wolf ◽  
J Mukherjee ◽  
A Guha

Introduction: GBMs are resistant to apoptosis induced by the hypoxic microenvironment and standard therapies including radiation and chemotherapy. We postulate that the Warburg effect, a preferential glycolytic phenotype of tumor cells even under aerobic conditions, plays a role in these aberrant pro-survival signals. In this study we quantitatively examined the expression profile of hypoxia-related glycolytic genes within pathologically- and MRI-defined “centre” and “periphery” of GBMs. We hypothesize that expression of hypoxia-induced glycolytic genes, particularly hexokinase 2 (HK2), favours cell survival and modulates resistance to tumour cell apoptosis by inhibiting the intrinsic mitochondrial apoptotic pathway. Methods: GBM patients underwent conventional T1-weighted contrast-enhanced MRI and MR spectroscopy studies on a 3.0T GE scanner, prior to stereotactic sampling (formalin and frozen) from regions which were T1-Gad enhancing (“centre”) and T2-positive, T1-Gad negative (“periphery”). Real-time qRT-PCR was performed to quantify regional gene expression of glycolytic genes including HK2. In vitro functional studies were performed in U87 and U373 GBM cell lines grown in normoxic (21% pO2) and hypoxic (< 1%pO2) conditions, transfected with HK2 siRNA followed by measurement of cell proliferation (BrdU), apoptosis (activated caspase 3/7, TUNEL, cytochrome c release) and viability (MTS assay). Results: There exists a differential expression profile of glycolytic enzymes between the hypoxic center and relatively normoxic periphery of GBMs. Under hypoxic conditions, there is increased expression of HK2 at the mitochondrial membrane in GBM cells. In vitro HK2 knockdown led to decreased cell survival and increased apoptosis via the intrinsic mitochondrial pathway, as seen by increased mitochondrial release of cytochrome-C. Conclusions: Increased expression of HK2 in the centre of GBMs promotes cell survival and confers resistance to apoptosis, as confirmed by in vitro studies. In vivo intracranial xenograft studies with injection of HK2-shRNA are currently being performed. HK2 and possibly other glycolytic enzymes may provide a target for enhanced therapeutic responsiveness thereby improving prognosis of patients with GBMs.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 182 ◽  
Author(s):  
Massimo Malerba ◽  
Raffaella Cerana

Fusicoccin (FC) is a well-known phytotoxin able to induce in Acer pseudoplatanus L. (sycamore) cultured cells, a set of responses similar to those induced by stress conditions. In this work, the possible involvement of peroxynitrite (ONOO−) in FC-induced stress responses was studied measuring both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific ONOO− scavenger: (1) cell death; (2) specific DNA fragmentation; (3) lipid peroxidation; (4) production of RNS and ROS; (5) activity of caspase-3-like proteases; and (6) release of cytochrome c from mitochondria, variations in the levels of molecular chaperones Hsp90 in the mitochondria and Hsp70 BiP in the endoplasmic reticulum (ER), and of regulatory 14-3-3 proteins in the cytosol. The obtained results indicate a role for ONOO− in the FC-induced responses. In particular, ONOO− seems involved in a PCD form showing apoptotic features such as specific DNA fragmentation, caspase-3-like protease activity, and cytochrome c release from mitochondria.


2012 ◽  
Vol 428 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Rui-feng Yang ◽  
Guo-wei Zhao ◽  
Shu-ting Liang ◽  
Yuan Zhang ◽  
Li-hong Sun ◽  
...  

2004 ◽  
Vol 286 (3) ◽  
pp. G479-G490 ◽  
Author(s):  
Sujoy Bhattacharya ◽  
Ramesh M. Ray ◽  
Leonard R. Johnson

It has been documented that polyamines play a critical role in the regulation of apoptosis in intestinal epithelial cells. We have recently reported that protection from TNF-α/cycloheximide (CHX)-induced apoptosis in epithelial cells depleted of polyamines is mediated through the inactivation of a proapoptotic mediator, JNK. In this study, we addressed the involvement of the MAPK pathway in the regulation of apoptosis after polyamine depletion of IEC-6 cells. Polyamine depletion by α-difluromethylornithine (DFMO) resulted in the sustained activation of ERK in response to TNF-α/CHX treatment. Pretreatment of polyamine-depleted IEC-6 cells with a cell membrane-permeable MEK1/2 inhibitor, U-0126, significantly inhibited TNF-α/CHX-induced ERK phosphorylation and significantly increased DNA fragmentation, JNK activity, and caspase-3 activity in response to TNF-α/CHX. Moreover, the dose dependency of U-0126-mediated inhibition of TNF-α/ CHX-induced ERK phosphorylation correlated with the reversal of the antiapoptotic effect of DFMO. IEC-6 cells expressing constitutively active MEK1 had decreased TNF-α/CHX-induced JNK phosphorylation and were significantly protected from apoptosis. Conversely, a dominant-negative MEK1 resulted in high basal activation of JNK, cytochrome c release, and spontaneous apoptosis. Polyamine depletion of the dominant-negative MEK1 cells did not prevent JNK activation or cytochrome c release and failed to confer protection from both TNF-α/CHX and camptothecin-induced apoptosis. Finally, expression of a dominant-negative mutant of JNK significantly protected IEC-6 cells from TNF-α/CHX-induced apoptosis. These data indicate that polyamine depletion results in the activation of ERK, which inhibits JNK activation and protects cells from apoptosis.


Sign in / Sign up

Export Citation Format

Share Document