ChemInform Abstract: THERMODYNAMIC CONSIDERATIONS IN COORDINATION PART 14,FORMATION CONSTANTS FOR LEAD(II)AMINOACID COMPLEXES AND COMPUTING THE COMPLEXING COMPETITION BETWEEN LEAD(II) AND IN VIVO ESSENTIAL METAL IONS, AND IN COMPUTER EVALUATION OF LIGANDS

1974 ◽  
Vol 5 (9) ◽  
Author(s):  
ANNA M. CORRIE ◽  
MURRAY L. D. TOUCHE ◽  
DAVID R. WILLIAMS
2012 ◽  
Vol 441 (3) ◽  
pp. 1017-1035 ◽  
Author(s):  
Katarzyna Banaszak ◽  
Vlad Martin-Diaconescu ◽  
Matteo Bellucci ◽  
Barbara Zambelli ◽  
Wojciech Rypniewski ◽  
...  

The survival and growth of the pathogen Helicobacter pylori in the gastric acidic environment is ensured by the activity of urease, an enzyme containing two essential Ni2+ ions in the active site. The metallo-chaperone UreE facilitates in vivo Ni2+ insertion into the apoenzyme. Crystals of apo-HpUreE (H. pylori UreE) and its Ni2+- and Zn2+-bound forms were obtained from protein solutions in the absence and presence of the metal ions. The crystal structures of the homodimeric protein, determined at 2.00 Å (apo), 1.59 Å (Ni2+) and 2.52 Å (Zn2+) resolution, show the conserved proximal and solvent-exposed His102 residues from two adjacent monomers invariably involved in metal binding. The C-terminal regions of the apoprotein are disordered in the crystal, but acquire significant ordering in the presence of the metal ions due to the binding of His152. The analysis of X-ray absorption spectral data obtained using solutions of Ni2+- and Zn2+-bound HpUreE provided accurate information of the metal-ion environment in the absence of solid-state effects. These results reveal the role of the histidine residues at the protein C-terminus in metal-ion binding, and the mutual influence of protein framework and metal-ion stereo-electronic properties in establishing co-ordination number and geometry leading to metal selectivity.


1975 ◽  
Vol 151 (2) ◽  
pp. 459-462 ◽  
Author(s):  
J Colby ◽  
H Dalton ◽  
R Whittenbury

Extracts of Methylomonas methanica catalyse the O2-and NAD(P)H-dependent disappearance of bromomethane. The activity is unstable at 2 degrees C but is stable at --70 degrees C for several weeks. Bromomethane mono-oxygenase is particulate and is inhibited by metal-binding reagents, by compounds SKF 525A and Lilly 53325, by some metal ions and by acetylene. Evidence is presented that indicates that bromomethane mono-oxygenase is the enzyme responsible for methane oxidation in vivo.


2016 ◽  
Vol 12 (6) ◽  
pp. 1731-1745 ◽  
Author(s):  
Jonathan Lotze ◽  
Ulrike Reinhardt ◽  
Oliver Seitz ◽  
Annette G. Beck-Sickinger

Peptide-tag based labelling can be achieved by (i) enzymes (ii) recognition of metal ions or small molecules and (iii) peptide–peptide interactions and enables site-specific protein visualization to investigate protein localization and trafficking.


Química Nova ◽  
2011 ◽  
Vol 34 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Najma Sultana ◽  
Erum Humza ◽  
Muhammad Saeed Arayne ◽  
Urooj Haroon

2013 ◽  
Vol 3 ◽  
pp. 388
Author(s):  
Faiza Rasheed ◽  

In vitro antibacterial and antioxidant activities of various leaf extracts of Justicia adhatoda L. (locally known as Bhaikar) were assessed. The leaves were also subjected to various phytochemical analysis. Results revealed that leaves of J. adhatoda L. contain significant amount of total alkaloid, phenols flavonoid, saponins, tannins , protein, crude oil, dietary fiber, essential and non essential metal ions. The methanol, ethanol, butanol, chloroform and n-hexane leaf extracts of J


2020 ◽  
Vol 20 (9) ◽  
pp. 5197-5210 ◽  
Author(s):  
Dong Gao ◽  
Krystal J. Godri Pollitt ◽  
James A. Mulholland ◽  
Armistead G. Russell ◽  
Rodney J. Weber

Abstract. The capability of ambient particles to generate in vivo reactive oxygen species (ROS), called oxidative potential (OP), is a potential metric for evaluating the health effects of particulate matter (PM) and is supported by several recent epidemiological investigations. Studies using various types of OP assays differ in their sensitivities to varying PM chemical components. In this study, we systematically compared two health-relevant acellular OP assays that track the depletion of antioxidants or reductant surrogates: (i) the synthetic respiratory-tract lining fluid (RTLF) assay that tracks the depletion of ascorbic acid (AA) and glutathione (GSH) and (ii) the dithiothreitol (DTT) assay that tracks the depletion of DTT. Yearlong daily samples were collected at an urban site in Atlanta, GA (Jefferson Street), during 2017, and both DTT and RTLF assays were performed to measure the OP of water-soluble PM2.5 components. PM2.5 mass and major chemical components, including metals, ions, and organic and elemental carbon were also analyzed. Correlation analysis found that OP as measured by the DTT and AA depletion (OPDTT and OPAA, respectively) were correlated with both organics and some water-soluble metal species, whereas that from the GSH depletion (OPGSH) was exclusively sensitive to water-soluble Cu. These OP assays were moderately correlated with each other due to the common contribution from metal ions. OPDTT and OPAA were moderately correlated with PM2.5 mass with Pearson's r=0.55 and 0.56, respectively, whereas OPGSH exhibited a lower correlation (r=0.24). There was little seasonal variation in the OP levels for all assays due to the weak seasonality of OP-associated species. Multivariate linear regression models were developed to predict OP measures from the particle composition data. Variability in OPDTT and OPAA were not only attributed to the concentrations of metal ions (mainly Fe and Cu) and organic compounds but also to antagonistic metal–organic and metal–metal interactions. OPGSH was sensitive to the change in water-soluble Cu and brown carbon (BrC), a proxy for ambient humic-like substances.


1976 ◽  
Vol 7 (34) ◽  
pp. no-no
Author(s):  
NIRO MATSUURA ◽  
KISABURO UMEMOTO ◽  
YASUYUKI TAKEDA ◽  
ATSUKO SASAKI

Sign in / Sign up

Export Citation Format

Share Document