scholarly journals An improved assay for bacterial methane mono-oxygenase: some properties of the enzyme from Methylomonas methanica

1975 ◽  
Vol 151 (2) ◽  
pp. 459-462 ◽  
Author(s):  
J Colby ◽  
H Dalton ◽  
R Whittenbury

Extracts of Methylomonas methanica catalyse the O2-and NAD(P)H-dependent disappearance of bromomethane. The activity is unstable at 2 degrees C but is stable at --70 degrees C for several weeks. Bromomethane mono-oxygenase is particulate and is inhibited by metal-binding reagents, by compounds SKF 525A and Lilly 53325, by some metal ions and by acetylene. Evidence is presented that indicates that bromomethane mono-oxygenase is the enzyme responsible for methane oxidation in vivo.

2012 ◽  
Vol 441 (3) ◽  
pp. 1017-1035 ◽  
Author(s):  
Katarzyna Banaszak ◽  
Vlad Martin-Diaconescu ◽  
Matteo Bellucci ◽  
Barbara Zambelli ◽  
Wojciech Rypniewski ◽  
...  

The survival and growth of the pathogen Helicobacter pylori in the gastric acidic environment is ensured by the activity of urease, an enzyme containing two essential Ni2+ ions in the active site. The metallo-chaperone UreE facilitates in vivo Ni2+ insertion into the apoenzyme. Crystals of apo-HpUreE (H. pylori UreE) and its Ni2+- and Zn2+-bound forms were obtained from protein solutions in the absence and presence of the metal ions. The crystal structures of the homodimeric protein, determined at 2.00 Å (apo), 1.59 Å (Ni2+) and 2.52 Å (Zn2+) resolution, show the conserved proximal and solvent-exposed His102 residues from two adjacent monomers invariably involved in metal binding. The C-terminal regions of the apoprotein are disordered in the crystal, but acquire significant ordering in the presence of the metal ions due to the binding of His152. The analysis of X-ray absorption spectral data obtained using solutions of Ni2+- and Zn2+-bound HpUreE provided accurate information of the metal-ion environment in the absence of solid-state effects. These results reveal the role of the histidine residues at the protein C-terminus in metal-ion binding, and the mutual influence of protein framework and metal-ion stereo-electronic properties in establishing co-ordination number and geometry leading to metal selectivity.


2021 ◽  
Author(s):  
Aditya Seetharaman ◽  
Priyadharshine Ramesh Babu ◽  
Maham Ismail ◽  
Darcie J Miller ◽  
Vivian Stojanoff

AbstractFerritin is an ubiquitous iron storage protein found in all kingdoms of life. Ferritin is essential for iron homeostasis and is involved in a wide range of physiological and pathological processes. Several structures of ferritin in complex with small molecules and metal ions have been reported. Here we report the crystal structures of Horse Spleen Ferritin, in which the crystals were grown by employing a novel approach adopting the microbatch experiments performed in the presence and absence of electric field using a 2% agarose pellet of CdSO4. We observed that 1) these structures contain increased number of Cd ions as compared to the crystallization of same protein by others using different methods. 2) The externally applied electric field reduced the number of nucleation and with fewer nucleation the size of the crystals increased. 3) There is no significant conformational change observed among these structures. 4) Irrespective of the externally applied electric field, this agarose microbatch crystallization method facilitates the retaining of increased number of bound metal ions with ferritin to mimic the possible in vivo environment.


1967 ◽  
Vol 15 (5) ◽  
pp. 276-284 ◽  
Author(s):  
TOSHIO NAKAMURA ◽  
TATSUJI NAMBA ◽  
DAVID GROB

Motor end plates in the tibialis anterior muscle of the rat were demonstrated by metal sulfide deposits following injection of aqueous solutions of lead, stannous, cadmium, zinc or cupric ions into the muscle in vivo or in vitro. The appearance of the end plates was similar to the structure demonstrated by cholinesterase staining, with visualization of the subneural apparatus. Neither metal binding nor cholinesterase activity was affected 4 weeks after dissection of the sciatic nerve, indicating that the metal binding site is postsynaptic. Freezing or formalin fixation of muscle prevented binding of all metal ions to the end plate without greatly affecting cholinesterase activity, indicating that these two activities of the end plate are distinct. Prior administration of acetylcholine, d-tubocurarine, neostigmine or diisopropyl fluorophosphate inhibited binding to the end plate of cadmium and zinc ions but did not alter binding of lead and stannous ions. By formation of a lake with alizarin red S previously injected in vivo intramuscularly, the release of calcium ions at the motor end plate following stimulation of the muscle through the nerve or administration of neostigmine was demonstrated. These results suggest a close relationship of the site of binding of divalent metal ions in the motor end plate to the site of calcium release, and a close but not identical relationship to the site of cholinesterase activity and the acetylcholine receptor.


2010 ◽  
Vol 427 (2) ◽  
pp. 289-296 ◽  
Author(s):  
Chris Tselepis ◽  
Samuel J. Ford ◽  
Andrew T. McKie ◽  
Wolfgang Vogel ◽  
Heinz Zoller ◽  
...  

Accumulating evidence suggests that hepcidin, a 25-residue peptide hormone, is the master regulator of iron metabolism. Further evidence suggests that the five N-terminal amino acids are crucial for mediating its biological function. With a histidine residue at position 3, this region also has the potential to bind bivalent metal ions. To characterize this hepcidin–metal interaction in detail, the present study utilizes electrospray MS to measure the binding of a range of metal ions to wild-type and mutant human and murine hepcidins. In addition, the biological effects of these point mutations were tested on Caco-2 and HEK-293T human cell lines and in mice. Our results show that hepcidin-25 can form complexes with copper, nickel and zinc; however, we failed to detect any hepcidin-25 binding to either ferric or ferrous ions. The greatest affinity observed was between hepcidin-25 and copper with a dissociation constant ≪1 μM. Substituting the histidine residue at position 3 in human hepcidin-25 and comparably the asparagine residue at position 3 in murine hepcidin-25 with an alanine residue markedly diminished the affinity for copper. The amino acid substitutions also decreased the biological activity of hepcidin-25; namely repression of ferroportin protein levels and hypoferraemia. In summary, the high affinity of hepcidin for copper suggests that hepcidin could bind copper in vivo and this may be of biological relevance.


2016 ◽  
Vol 45 (45) ◽  
pp. 18267-18280 ◽  
Author(s):  
Maurizio Remelli ◽  
Carlo Ceciliato ◽  
Remo Guerrini ◽  
Paulina Kolkowska ◽  
Karolina Krzywoszynska ◽  
...  

The metal-binding ability of hemopressin and its derivatives suggests a possible role of the endogenous metal ions in the biological activity of these neuropeptides.


2018 ◽  
Vol 25 (6) ◽  
pp. 715-747 ◽  
Author(s):  
Giuseppe Trapani ◽  
Cristina Satriano ◽  
Diego La Mendola

Background: The metal ions dyshomeostasis is increasingly recognized to play a crucial role in the development of aging-related neurodegenerative diseases. Metal trafficking in the brain is related to proteins regulating both uptake and efflux of metals in neurons. Different pathways may occur, depending on specific binding features of metallo-protein complexes. In particular, copper, zinc and iron are recognized to influence the biochemistry of proteins involved in neurodegeneration (for instance Aβ and α-synuclein), as well as those playing a crucial role in neuronal development and efficiency (neurotrophins). Nowadays the application of peptide-based drugs is widespread for different pathologies, but the short lifetime in vivo due to proteolysis and other shortcomings still limit their use. Methods: A structured search was performed about the state of the art on: i) peptidomimetic approaches used to obtain peptides mimicking the metal binding activities of proteins involved in neurons survival, ii) peptide-based nanostructures, as promising biomaterials in tissue engineering and substrates for neurites outgrowth and synapses formation. Results: Recent developments on metal-binding peptides and peptide nanostructures for therapeutic application in neurodegenerative diseases are reviewed, showing as metal ions interaction may affect structural and biological properties of different proteins involved in neurodegenerative diseases. Conclusion: This review provides a survey on peptides able to mimic some biofunctional activities of the whole protein, e.g., the binding features to metal ions, thus highlighting their promising potentialities as new, more effective, therapeutics. The integration of such peptides into multifunctional nanoplatforms can be a smart route for the development of biomaterials scaffolds and nanomedicine applications.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3255
Author(s):  
Denise Bellotti ◽  
Maurizio Remelli

Deferoxamine B is an outstanding molecule which has been widely studied in the past decade for its ability to bind iron and many other metal ions. The versatility of this metal chelator makes it suitable for a number of medicinal and analytical applications, from the well-known iron chelation therapy to the most recent use in sensor devices. The three bidentate hydroxamic functional groups of deferoxamine B are the centerpiece of its metal binding ability, which allows the formation of stable complexes with many transition, lanthanoid and actinoid metal ions. In addition to the ferric ion, in fact, more than 20 different metal complexes of deferoxamine b have been characterized in terms of their chemical speciation in solution. In addition, the availability of a terminal amino group, most often not involved in complexation, opens the way to deferoxamine B modification and functionalization. This review aims to collect and summarize the available data concerning the complex-formation equilibria in solutions of deferoxamine B with different metal ions. A general overview of the progress of its applications over the past decade is also discussed, including the treatment of iron overload-associated diseases, its clinical use against cancer and neurodegenerative disorders and its role as a diagnostic tool.


Encyclopedia ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 261-292
Author(s):  
Eugene A. Permyakov

Metal ions play several major roles in proteins: structural, regulatory, and enzymatic. The binding of some metal ions increase stability of proteins or protein domains. Some metal ions can regulate various cell processes being first, second, or third messengers. Some metal ions, especially transition metal ions, take part in catalysis in many enzymes. From ten to twelve metals are vitally important for activity of living organisms: sodium, potassium, magnesium, calcium, manganese, iron, cobalt, zinc, nickel, vanadium, molybdenum, and tungsten. This short review is devoted to structural, physical, chemical, and physiological properties of proteins, which specifically bind these metal cations.


RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12815-12825
Author(s):  
Yajie Wang ◽  
Feihong Meng ◽  
Tong Lu ◽  
Chunyun Wang ◽  
Fei Li

Their is a counteraction between a decrease in the disruptive ability of metal-associated oligomer species and an increase in the quantity of oligomers promoted by the metal binding in the activity of hIAPP induced membrane damage.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 146
Author(s):  
Rocío Jurado ◽  
Natividad Gálvez

The coupling of proteins that can assemble, recognise or mineralise specific inorganic species is a promising strategy for the synthesis of nanoscale materials with a controllable morphology and functionality. Herein, we report that apoferritin protein amyloid fibrils (APO) have the ability to assemble and/or synthesise various metal and metal compound nanoparticles (NPs). As such, we prepared metal NP–protein hybrid bioconjugates with improved optical and magnetic properties by coupling diverse gold (AuNPs) and magnetic iron oxide nanoparticles (MNPs) to apoferritin amyloid fibrils and compared them to the well-known β-lactoglobulin (BLG) protein. In a second approach, we used of solvent-exposed metal-binding residues in APO amyloid fibrils as nanoreactors for the in situ synthesis of gold, silver (AgNPs) and palladium nanoparticles (PdNPs). Our results demonstrate, the versatile nature of the APO biotemplate and its high potential for preparing functional hybrid bionanomaterials. Specifically, the use of apoferritin fibrils as vectors to integrate magnetic MNPs or AuNPs is a promising synthetic strategy for the preparation of specific contrast agents for early in vivo detection using various bioimaging techniques.


Sign in / Sign up

Export Citation Format

Share Document