ChemInform Abstract: SUBSTITUENT EFFECTS IN HYDROBORATION: REACTION PATHWAYS FOR THE MARKOWNIKOFF AND ANTI-MARKOWNIKOFF ADDITION OF BORANE TO PROPYLENE AND CYANOETHYLENE

1981 ◽  
Vol 12 (33) ◽  
Author(s):  
G. D. GRAHAM ◽  
S. C. FREILICH ◽  
W. N. LIPSCOMB
2006 ◽  
Vol 71 (15) ◽  
pp. 5616-5624 ◽  
Author(s):  
Francesca D'Anna ◽  
Vincenzo Frenna ◽  
Gabriella Macaluso ◽  
Salvatore Marullo ◽  
Stefano Morganti ◽  
...  

2009 ◽  
Vol 74 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Martin Lepšík ◽  
Martin Srnec ◽  
Drahomír Hnyk ◽  
Bohumír Grüner ◽  
Jaromír Plešek ◽  
...  

The exo-substituent effects in halogenated icosahedral B12H122– (B12) and octahedral B6H62– (B6) closo-borane skeletons were studied both experimentally and theoretically. Firstly, the equilibrium geometries of exo-substituted B12 and B6 clusters were obtained using quantum chemical calculations at the MP2/def2-SVP level. A comparison with the available X-ray crystallographic data revealed a very good agreement between the theoretical and experimental values. Secondly, other descriptors of the molecular structure of these borane compounds – 11B NMR chemical shifts – were experimentally determined and compared with the calculated values obtained by the ab initio/GIAO approach at the MP2/def2-TZVP level. It was shown that the calculated data reproduced the experiment very closely. Thirdly, we investigated experimentally the halogenation reactions of B12 and attempted to explain the observed ratios between the two obtained disubstituted products (meta/ortho ~ 4:1) by calculating their thermodynamic stabilities using the DFT/B3LYP method. These calculations showed the enhanced stability of the meta disubstituted B12 but did not explain why the para product had not been observed in the experiment. We thus turned our attention to the kinetic aspects of exo-substitution reactions by exploring the possible reaction pathways and transition states. In spite of the complexity of the plausible reaction mechanisms, reasonable agreement was obtained between the calculated activation barriers and the experimental observations concerning the halogenation reactions of the B6 and B12 molecules. It also allowed to exclude from considerations certain reaction pathways leading to the mono- and dihalogenated B12 and B6 species.


1992 ◽  
Vol 89 ◽  
pp. 1567-1571
Author(s):  
O Pytela ◽  
M Ludwig
Keyword(s):  

2019 ◽  
Author(s):  
Clare Bakewell ◽  
Martí Garçon ◽  
Richard Y Kong ◽  
Louisa O'Hare ◽  
Andrew J. P. White ◽  
...  

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of 1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes complementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fused hydrocarbon rings.


2019 ◽  
Author(s):  
James Ewen ◽  
Carlos Ayestaran Latorre ◽  
Arash Khajeh ◽  
Joshua Moore ◽  
Joseph Remias ◽  
...  

<p>Phosphate esters have a wide range of industrial applications, for example in tribology where they are used as vapour phase lubricants and antiwear additives. To rationally design phosphate esters with improved tribological performance, an atomic-level understanding of their film formation mechanisms is required. One important aspect is the thermal decomposition of phosphate esters on steel surfaces, since this initiates film formation. In this study, ReaxFF molecular dynamics simulations are used to study the thermal decomposition of phosphate esters with different substituents on several ferrous surfaces. On Fe<sub>3</sub>O<sub>4</sub>(001) and α-Fe(110), chemisorption interactions between the phosphate esters and the surfaces occur even at room temperature, and the number of molecule-surface bonds increases as the temperature is increased from 300 to 1000 K. Conversely, on hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>, most of the molecules are physisorbed, even at high temperature. Thermal decomposition rates were much higher on Fe<sub>3</sub>O<sub>4</sub>(001) and particularly α-Fe(110) compared to hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>. This suggests that water passivates ferrous surfaces and inhibits phosphate ester chemisorption, decomposition, and ultimately film formation. On Fe<sub>3</sub>O<sub>4</sub>(001), thermal decomposition proceeds mainly through C-O cleavage (to form surface alkyl and aryl groups) and C-H cleavage (to form surface hydroxyls). The onset temperature for C-O cleavage on Fe<sub>3</sub>O<sub>4</sub>(001) increases in the order: tertiary alkyl < secondary alkyl < primary linear alkyl ≈ primary branched alkyl < aryl. This order is in agreement with experimental observations for the thermal stability of antiwear additives with similar substituents. The results highlight surface and substituent effects on the thermal decomposition of phosphate esters which should be helpful for the design of new molecules with improved performance.</p>


2018 ◽  
Author(s):  
Victor Laserna ◽  
Tom Sheppard

A versatile approach to the valorization of propargylic alcohols is reported, enabling controlled access to three different products from the same starting materials. Firstly, a general method for the hydroamination of propargylic alcohols with anilines is described using gold catalysis to give 3-hydroxy imines with complete regioselectivity. These 3-hydroxyimines can be reduced to give 1,3-aminoalcohols with high syn seletivity. Alternatively, by using a catalytic quantity of aniline, 3-hydroxyketones can be obtained in high yield directly from propargylic alcohols. Further manipulation of the reaction conditions enables the selective formation of 3-aminoketones via a rearrangement/hydroamination pathway.<br>


Sign in / Sign up

Export Citation Format

Share Document