antiwear additives
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 5)

H-INDEX

21
(FIVE YEARS 0)

2021 ◽  
Vol 69 (2) ◽  
Author(s):  
Konstantinos Pagkalis ◽  
Hugh Spikes ◽  
Jakub Jelita Rydel ◽  
Marc Ingram ◽  
Amir Kadiric

AbstractThe effectiveness of antiwear additives in laboratory tests is commonly evaluated using specimens made of AISI 52100 through-hardened bearing steel. However, many lubricated machine components are made of steels with significantly different material compositions, which raises an important practical question of whether the performance of antiwear additives with these other steel types is different from that established with AISI 52100. To help answer this question, this paper investigates the influence of steel composition on the formation and effectiveness of antiwear films. Four steels that are commonly used in tribological applications, namely AISI 52100 through-hardened bearing steel, 16MnCr5 case-carburised gear steel, M2 high speed steel and 440C stainless steel are tested in rolling-sliding, ball-on-disc contacts lubricated with three custom-made oils, one containing ZDDP and two containing different types of ashless antiwear additives. The relative effectiveness of their boundary films was assessed by measuring their thickness and associated wear and friction over 12 h of rubbing at two specimen roughness levels. For ZDDP it was found that the formation of antiwear film was not significantly influenced by steel composition or specimen surface roughness. A similar tribofilm thickness, final tribofilm roughness and friction was observed with all four steels. No measurable wear was observed. By contrast, for the ashless antiwear additives the thickness and effectiveness of their tribofilms was strongly influenced by steel composition, particularly at higher roughness levels. The exact trends in film thickness vs steel relationship depended on the specific chemistry of the ashless additive (ester-based or acid-based) but in general, relative to AISI 52100 steel, M2 steel promoted ashless tribofilm formation whilst 440C retarded ashless tribofilm formation. This behaviour is attributed to the presence of different alloying elements and the ability of the additives to extract metal cations from the rubbing surfaces to support the growth of a tribofilm. In all cases ZDDP films were thicker and rougher, and produced higher friction than those formed by the ashless additives. However, unlike ZDDP, ashless blends generally produced significant wear, particularly with 16MnCr5 and M2 steels. The results indicate that to ensure reliable performance of a given machine component, the chemistry of an ashless antiwear additive should be matched with the types of steel present in the lubricated machine.



2021 ◽  
Author(s):  
James Ewen ◽  
Carlos Ayestaran Latorre ◽  
Chiara Gattinoni ◽  
Arash Khajeh ◽  
Joshua Moore ◽  
...  

<p></p><p>Phosphate esters have a wide range of industrial applications, for example in tribology where they are used as vapour phase lubricants and antiwear additives. An atomic-level understanding of phosphate ester tribofilm formation mechanisms is required to improve their tribological performance. A process of particular interest is the thermal decomposition of phosphate esters on steel surfaces, since this initiates polyphosphate film formation. In this study, reactive force field (ReaxFF) molecular dynamics (MD) simulations are used to study the thermal decomposition of phosphate esters with different substituents on several ferrous surfaces. The ReaxFF parameterisation was validated for a representative system using density functional theory (DFT) calculations. During the MD simulations on Fe 3 O 4 (001) and α-Fe(110), chemisorption interactions between the phosphate esters and the surfaces occur even at room temperature, and the number of molecule-surface bonds increases as the temperature increases from 300 to 1000 K. Conversely, on hydroxylated, amorphous Fe 3 O 4 , most of the molecules are physisorbed and some desorption occurs at high temperature. Thermal decomposition rates were much higher on Fe 3 O 4 (001) and particularly α-Fe(110) compared to hydroxylated, amorphous Fe 3 O 4. This suggests that water passivates ferrous surfaces and inhibits phosphate ester chemisorption, decomposition, and ultimately polyphosphate film formation. For the alkyl phosphates, thermal decomposition proceeds mainly through CO and C-H cleavage on Fe 3 O 4 (001). Aryl phosphates show much higher thermal stability, and decomposition on Fe 3 O 4 (001) only occurs through P-O and C-H cleavage, which require very high temperature. The onset temperature for CO cleavage on Fe 3 O 4 (001) increases as: tertiary alkyl < secondary alkyl < primary linear alkyl ≈ primary branched alkyl < aryl. This order is consistent with experimental observations for the thermal stability of antiwear additives with similar substituents. The simulation results clarify a range of surface and substituent effects on the thermal decomposition of phosphate esters on steel that should be helpful for the design of new molecules with improved tribological performance.<br></p><p></p>



2021 ◽  
pp. 106942
Author(s):  
Zhiwen Zheng ◽  
Hongxiang Yu ◽  
Haijie Chen ◽  
Xiaolong Liu ◽  
Haizhong Wang ◽  
...  


Author(s):  
Aleksandr Y. Fakeev ◽  
◽  
Natalya V. Lezhneva ◽  

Based on the analysis of the existing distributed control system of the diesel fuel mixing unit, the imperfection of the control loops of the kerosene fraction, the depressant-dispersant, cetane-increasing and antiwear additives were revealed due to the fact that they do not take into account the quality indicators of commercial diesel fuel if there are in-line analyzers of its characteristics in the automated system. It leads to the need for the operator to participate in the control of the flow rate of these flows. In this regard, the unit was simulated on the basis of experimental and statistical methods, based on the results of which a virtual analyzer of the lubricity of commercial diesel fuel was developed. Proposals have been formulated for the modernization of control loops with the consumption of depressant-dispersant and cetane-increasing additives, kerosene fraction, adjusted for the qualitative characteristics of commercial diesel fuel, as well as the consumption of antiwear additives, corrected according to the results of the readings of the developed virtual analyzer of the lubricity of fuel. Programs for the implementation of modernized control loops in the language of functional blocks of the Centum VP controller have been developed.



Author(s):  
Alexandra K. Goryunova ◽  
Natalia M. Likhterova ◽  
Konstantin V. Shatalov ◽  
Elena A. Kletter

In the framework of the state import substitution program for the development of a domestic antiwear additive for jet fuels the physicochemical characteristics of the approved foreign antiwear additives of DNK, HITEC 580 and Unicor J were analyzed at the first stage. The analysis revealed that using solvents during the production of HITEC 580 additives and Unicor J improve their consumer properties (low temperature characteristics). At the second stage of the study the composition of currently used additives HITEC 580 and Unicor J was studied by gas chromatography-mass spectrometry. It was shown, that the same active component is used in their composition - dimers of unsaturated fatty acids C18, namely a mixture of dimers of linolenic, linoleic and oleic acids, among which the dimer formed from linoleic and oleic acids prevails. An analysis of the solvents used in the additive composition showed that in the production of Unicor J additives they use an aromatic solvent containing 92% of monoaromatic compounds, mainly of the C10 series, which is probably the product of gasoline reforming, and HITEC 580 additives use an aliphatic solvent containing mainly n alkanes (41%). From the presented results of the study it follows that when developing a domestic antiwear additive formulation, it is necessary to choose compounds containing 1 or 2 carboxyl groups as the active component, and as the solvent either aromatic or aliphatic, depending on the cost and availability on the domestic market.



2020 ◽  
Vol 93 (11) ◽  
pp. 1629-1637
Author(s):  
O. P. Parenago ◽  
E. Yu. Oganesova ◽  
A. S. Lyadov ◽  
A. A. Sharaeva


2020 ◽  
Vol 56 (4) ◽  
pp. 517-529
Author(s):  
B. P. Tumanyan ◽  
P. Yu. Shcherbakov ◽  
E. A. Sharin ◽  
M. E. Matin ◽  
O. A. Matveeva


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marlene Bartolomé Sáez ◽  
Antolin E. Hernández Battez ◽  
Jorge Espina Casado ◽  
José L. Viesca Rodríguez ◽  
Alfonso Fernández-González ◽  
...  

Purpose The purpose of this paper is to study the antifriction, antiwear and tribolayer formation properties of the trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate ionic liquid (IL) as additive at 1 wt.% in two base oils and their mixtures, comparing the results with those of a commercial oil. Design/methodology/approach The mixture of the base oils used in the formulation of the commercial oil SAE 0W20 plus the IL was tested under rolling/sliding and reciprocating conditions to determine the so-called Stribeck curve, the tribolayer formation and the antifriction and antiwear behaviors. Findings The use of this IL as additive in these oils does not change their viscosity; improves the antifriction and antiwear properties of the base oils, making equal or outperforming these properties of the SAE 0W20; and the thickness and formation rate of the tribolayer resulting from the IL-surface interaction is highly dependent on the type of base oil and influence on the friction and wear results. Originality/value The use of this IL allows to replace partial or totally commercial antifriction and antiwear additives. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2020-0179/



2020 ◽  
Vol 68 (3) ◽  
Author(s):  
Juli Felicio Luiz ◽  
Hugh Spikes

Abstract The film-forming, friction and wear properties of a range of model and commercial ashless P and P/S antiwear additives have been studied. A method has been developed for removing the tribofilms formed by such additives in order to effectively quantify mild wear. In general the P/S additives studied formed thinner tribofilms but gave lower wear than the S-free P ones. In extended wear tests, three P/S additives gave wear as low, or lower, than a primary zinc dialkyldithiophosphate (ZDDP). For almost all lubricants tested the wear rate measured in short tests was considerably higher than that in long tests due to the greater contribution of running-in wear in the former. This highlights the importance of basing antiwear additive choice on reasonably long tests, where running-in becomes only a small component of the wear measured. It has been found that for both P and P/S ashless additives the addition of oil-soluble metal compounds based on Ti and Ca boosts tribofilm formation and can lead to very thick films, comparable to those formed by ZDDP. However, this thick film formation tends to be accompanied by an increase in mixed friction and also does not appear to reduce wear but may even increase it.



Sign in / Sign up

Export Citation Format

Share Document