ChemInform Abstract: DEUTERATION OF AN ASYMMETRIC SHORT HYDROGEN BOND. X-RAY CRYSTAL STRUCTURE OF POTASSIUM FLUORIDE-SUCCINIC ACID-D2

1982 ◽  
Vol 13 (4) ◽  
Author(s):  
J. EMSLEY ◽  
D. J. JONES ◽  
R. KURODA
1996 ◽  
Vol 61 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Roman Řeřicha ◽  
Ivana Císařová ◽  
Jaroslav Podlaha

The crystal structure of the title compound was determined by single crystal X-ray diffraction. It consists of molecules of benzohydroxamic acid, its O-deprotonated anions and lithium cations in the 1 : 1 : 1 molar ratio. Although the molecular geometry of the anion is very similar to that of the acid, these units can be unambiguously distinguished since the short hydrogen bond between the OH group of the acid and the N-bonded oxygen atom of the anion is remarkably asymmetric. This bond, together with the lithium cations (being surrounded by five oxygens), links the units into chains running in the crystallographic ab plane. The coordination polyhedron around Li represents a rare example of an almost undistorted LiO5 square pyramidal arrangement.


2015 ◽  
Vol 30 (3) ◽  
pp. 192-198
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of ziprasidone hydrochloride monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Ziprasidone hydrochloride monohydrate crystallizes in space group P-1 (#2) with a = 7.250 10(3), b = 10.986 66(8), c = 14.071 87(14) Å, α = 83.4310(4), β = 80.5931(6), γ = 87.1437(6)°, V = 1098.00(1) Å3, and Z = 2. The ziprasidone conformation in the solid state is very close to the minimum energy conformation. The positively-charged nitrogen in the ziprasidone makes a strong hydrogen bond with the chloride anion. The water molecule makes two weaker bonds to the chloride, and acts as an acceptor in an N–H⋯O hydrogen bond. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1492.


1980 ◽  
Vol 58 (17) ◽  
pp. 1821-1828 ◽  
Author(s):  
Gary D. Fallon ◽  
Bryan M. Gatehouse ◽  
Allan Pring ◽  
Ian D. Rae ◽  
Josephine A. Weigold

Ethyl-3-amino-2-benzoyl-2-butenoate crystallizes from pentane as either the E (mp 82–84 °C) or the Z-isomer (mp 95.5–96.5 °C). The E isomer is less stable, and changes spontaneously into the Z, which bas been identified by X-ray crystallography. The structure is characterised by an N–H/ester CO hydrogen bond and a very long C2—C3 bond (1.39 Å). Nuclear magnetic resonance methods have been used to measure the rate of [Formula: see text] isomerization at several temperatures, leading to the estimate that the free energy of activation at 268 K is 56 ± 8 kJ.


2021 ◽  
Vol 91 (11) ◽  
pp. 2176-2186
Author(s):  
G. S. Tsebrikova ◽  
Yu. I. Rogacheva ◽  
I. S. Ivanova ◽  
A. B. Ilyukhin ◽  
V. P. Soloviev ◽  
...  

Abstract 2-Hydroxy-5-methoxyphenylphosphonic acid (H3L1) and the complex [Cu(H2L1)2(H2O)2] were synthesized and characterized by IR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The polyhedron of the copper atom is an axially elongated square bipyramid with oxygen atoms of phenolic and of monodeprotonated phosphonic groups at the base and oxygen atoms of water molecules at the vertices. The protonation constants of the H3L1 acid and the stability constants of its Cu2+ complexes in water were determined by potentiometric titration. The protonation constants of the acid in water are significantly influenced by the intramolecular hydrogen bond and the methoxy group. The H3L1 acid forms complexes CuL‒ and CuL24‒ with Cu2+ in water.


Sign in / Sign up

Export Citation Format

Share Document