scholarly journals Synthesis and Complexation Properties of 2-Hydroxy-5-methoxyphenylphosphonic Acid (H3L1). Crystal Structure of the [Cu(H2L1)2(Н2О)2] Complex

2021 ◽  
Vol 91 (11) ◽  
pp. 2176-2186
Author(s):  
G. S. Tsebrikova ◽  
Yu. I. Rogacheva ◽  
I. S. Ivanova ◽  
A. B. Ilyukhin ◽  
V. P. Soloviev ◽  
...  

Abstract 2-Hydroxy-5-methoxyphenylphosphonic acid (H3L1) and the complex [Cu(H2L1)2(H2O)2] were synthesized and characterized by IR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The polyhedron of the copper atom is an axially elongated square bipyramid with oxygen atoms of phenolic and of monodeprotonated phosphonic groups at the base and oxygen atoms of water molecules at the vertices. The protonation constants of the H3L1 acid and the stability constants of its Cu2+ complexes in water were determined by potentiometric titration. The protonation constants of the acid in water are significantly influenced by the intramolecular hydrogen bond and the methoxy group. The H3L1 acid forms complexes CuL‒ and CuL24‒ with Cu2+ in water.

2005 ◽  
Vol 60 (1) ◽  
pp. 33-36 ◽  
Author(s):  
Pritha Talukder ◽  
Amitabha Datta ◽  
Samiran Mitra ◽  
Georgina Rosair

A new one-dimensional coordination polymer [Co(CCl3COO)2(CH3OH)2(μ-4,4’-bipy)]n (1), has been synthesised and its crystal structure determined by single-crystal X-ray diffraction. The structure consists of a one-dimensional linear chain of cobalt(II) centres linked by bridging 4,4’-bipyridine units. The Co(II) ion lies at an inversion centre forming an elongated octahedral coordination sphere. There is an intramolecular hydrogen bond [2.02(5) Å ] between a trichloroacetate oxygen and a methanolic hydrogen forming a planar six-membered ring.


1979 ◽  
Vol 32 (2) ◽  
pp. 301 ◽  
Author(s):  
V Diakiw ◽  
TW Hambley ◽  
DL Kepert ◽  
CL Raston ◽  
AH White

The crystal structure of the title compound, Ca(C6H2N307)2,5H2O, has been determined by single-crystal X-ray diffraction at 295(1) K and refined by least squares to a residual of 0.049 for 1513 'observed' reflections. Crystals are orthorhombic, Pmab, a 24.169(6), b l0.292(7), c 8.554(2) �, Z 4. The stereochemistry about the calcium has not been observed previously for the system [M(bidentate)2- (unidentate)4]; in the present structure, the calcium is coordinated by a pair of bidentate picrate ligands and the four water molecules in an array in which three of the water molecules occupy a triangular face of a square antiprism, the overall array having m symmetry. The remaining water molecule occupies a lattice site with no close interaction with the other species.


1990 ◽  
Vol 68 (12) ◽  
pp. 2183-2189 ◽  
Author(s):  
Pierre Audet ◽  
Rodrigue Savoie ◽  
Michel Simard

A stoichiometric complex of formula maleic acid•2H2O•18-crown-6 has been obtained from maleic acid and the macrocyclic polyether 18-crown-6. Crystals of this complex have been shown by X-ray diffraction crystallography to belong to the Cc space group of the monoclinic system. The acid molecules in the adduct are linked to each other through a water molecule, giving infinite [-acid-H2O-]n chains. They are also linked to the crown ether via water molecules. The infrared and Raman spectra of the complex are presented and compared to those of crystalline maleic acid. Keywords: maleic acid/18-crown-6, structure, X-ray, spectra.


1988 ◽  
Vol 53 (11) ◽  
pp. 2863-2876 ◽  
Author(s):  
Giovanni Valle ◽  
Marco Crisma ◽  
Kuo-Long Yu ◽  
Claudio Toniolo ◽  
Ram K. Mishra ◽  
...  

The synthesis of an analogue of the neuropharmacologically active peptide Pro-Leu-Gly-NH2 in which the Leu-Gly peptide bond has been replaced with a tetrazole moiety was carried out. The molecular and crystal structure of the tetrazole analogue Pro-Leuψ[CN4]Gly-NH2 was determined by X-ray diffraction and a comparison was made with the published X-ray structure of Pro-Leu-Gly-NH2. The tetrazole annular system turns out to be a good conformationally-restricted replacement for the cis-peptide bond in terms of bond lengths, bond angles and the ω torsion angle. The molecule was found to be folded at the -Leuψ[CN4]Gly- sequence, but it did not form the intramolecular N-H···O=C hydrogen bond characteristic of the type Vla β-bend conformation. In contrast to Pro-Leu-Gly-NH2, Pro-Leuψ[CN4]Gly-NH2 was found to be unable to enhance the binding of dopamine receptor agonists to the dopamine receptor.


1997 ◽  
Vol 52 (2) ◽  
pp. 256-258 ◽  
Author(s):  
Evgeni V. Avtomonov ◽  
Rainer Grüning ◽  
Jörg Lorberth

Abstract The crystal structure of the title compound has been determined by X-ray diffraction methods. Due to the Lewis acidic character of the iodine substituent a “zig-zag” chain is formed via intermolecular interactions (2.933(4) A) between iodine and oxygen atoms of theocarbamate moiety. A three-dimensional network is formed through hydrogen-bridging (2.04 A) between NH-groups and the oxygen atoms of the neighbouring carbamate group of the next molecule.


1991 ◽  
Vol 46 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Klaus Brodersen ◽  
Jörg Zimmerhackl

1,13-Bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane-dimercury(I)-diperchlorate is formed by the reaction of 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane in ethanol with an aqueous solution of dimercury(I)-diperchlorate.It crystallizes in the triclinic space group P Ī with a = 1020.6(2), b = 1200.6(8), c = 1441.1(6) pm , α = 69.60(5)°, β = 83.04(13)°, y = 66.53(4)° and Z = 2. The crystal structure was determined by X -ray diffraction and refined to an R-value o f 0.079. The Hg22+ -ion is coordinated to both nitrogen atoms and four oxygen atoms of one molecule of the ligand. By changing four C - O torsional angles from trans to gauche, the ligand adopts a helical, chiral configuration around the Hg22+-ion. The CIO4--ions are not coordinated to the Hg22+-ion.


2020 ◽  
Vol 151 (9) ◽  
pp. 1317-1328
Author(s):  
Matthias Weil ◽  
Berthold Stöger

Abstract The caesium phosphates Cs3(H1.5PO4)2(H2O)2 and Cs3(H1.5PO4)2 were obtained from aqueous solutions, and Cs4P2O7(H2O)4 and CsPO3 from solid state reactions, respectively. Cs3(H1.5PO4)2, Cs4P2O7(H2O)4, and CsPO3 were fully structurally characterized for the first time on basis of single-crystal X-ray diffraction data recorded at − 173 °C. Monoclinic Cs3(H1.5PO4)2 (Z = 2, C2/m) represents a new structure type and comprises hydrogen phosphate groups involved in the formation of a strong non-symmetrical hydrogen bond (accompanied by a disordered H atom over a twofold rotation axis) and a very strong symmetric hydrogen bond (with the H atom situated on an inversion centre) with symmetry-related neighbouring anions. Triclinic Cs4P2O7(H2O)4 (Z = 2, P$$\bar{1}$$ 1 ¯ ) crystallizes also in a new structure type and is represented by a diphosphate group with a P–O–P bridging angle of 128.5°. Although H atoms of the water molecules were not modelled, O···O distances point to hydrogen bonds of medium strengths in the crystal structure. CsPO3 is monoclinic (Z = 4, P21/n) and belongs to the family of catena-polyphosphates (MPO3)n with a repetition period of 2. It is isotypic with the room-temperature modification of RbPO3. The crystal structure of Cs3(H1.5PO4)2(H2O)2 was re-evaluated on the basis of single-crystal X-ray diffraction data at − 173 °C, revealing that two adjacent hydrogen phosphate anions are connected by a very strong and non-symmetrical hydrogen bond, in contrast to the previously described symmetrical bonding situation derived from room temperature X-ray diffraction data. In the four title crystal structures, coordination numbers of the caesium cations range from 7 to 12. Graphic abstract


2005 ◽  
Vol 60 (7) ◽  
pp. 753-757 ◽  
Author(s):  
Claudia Bromant ◽  
Wassiliki Nika ◽  
Ingo Pantenburg ◽  
Gerd Meyer

Pr(Man)3(ManH) and Er(Man)3(H2O)2 (ManH = mandelic acid) have been synthesized by slow evaporation of aqueous solutions of rare-earth salts (Pr(OH)3, ErCl3 · 6H2O) with mandelic acid (α-hydroxy-phenyl acetic acid, C8H8O3) and their crystal structures were determined on the basis of X-ray data. In the crystal structure of Pr(Man)3(ManH) (1) (monoclinic, P21, a = 574.8(1), b = 3042.5(4), c = 908.4(1) pm, β = 92.09(2)°, Z = 2) the Pr(III) ions are surrounded by eight oxygen atoms in a distorted square antiprismatic fashion with distances Pr-O in the range 241 to 254 pm. These polyhedra are connected by coordinative bonds to chains paralleling the crystallographic [100] direction. In Er(Man)3(H2O)2 (2) (orthorhombic, P212121, a = 577.7(3), b = 1816.3(13), c = 2329.4(13) pm, Z = 4) the crystal structure contains isolated complexes with octa-coordinated erbium atoms chelated by three mandelate anions through one of their carboxylate oxygen atoms and the alcoholic hydroxyl group. Two water molecules complete the distorted square antiprismatic coordination sphere.


1998 ◽  
Vol 76 (3) ◽  
pp. 301-306
Author(s):  
Sengen Sun ◽  
James F Britten ◽  
Christopher N Cow ◽  
Chérif F Matta ◽  
Paul HM Harrison

The crystal structure of 3,4,7,8-tetramethylglycoluril (5) was determined by X-ray diffraction. The structure reveals a hydrogen-bonding motif in the crystal lattice that differs from that present in related glycolurils. The two sides of each molecule form part of two independent, but parallel, infinite helical chains. These chains are formed by the NH donor and C==O acceptor on one side of a glycoluril molecule, forming H-bonds to two different molecules at adjacent positions within the helix. On the other side of the same molecule, a similar motif generates another helix of opposite helicity to the first. The molecule has a crystallographic plane of symmetry through the two bridgehead carbon atoms and the two bridgehead methyl groups, which are syn-periplanar. Thus, 5 is similar to 3,4-dimethylglycoluril (3), but differs from some glycolurils, where there is a significant dihedral angle between the two bridgehead-to-bridgehead substituent bonds. Bond lengths and angles in 5 resemble those reported for 3, but bond lengths around the bridgehead positions are slightly lengthened relative to 3.Key words: glycoluril, 1,2,5,8-tetramethyl-2,6,7,8-tetraazabicyclo[3.3.0]octane-3,7-dione, X-ray diffraction, crystal structure, hydrogen-bond array.


Author(s):  
Hristina I. Sbirkova-Dimitrova ◽  
Boris Shivachev

The structure of 4′,6-diamidine-2-phenylindole (DAPI) bound to the synthetic B-DNA oligonucleotide d(CGTGAATTCACG) has been solved in space groupP212121by single-crystal X-ray diffraction at a resolution of 2.2 Å. The structure is nearly isomorphous to that of the previously reported crystal structure of the oligonucleotide d(CGTGAATTCACG) alone. The adjustments in crystal packing between the native DNA molecule and the DNA–DAPI complex are described. DAPI lies in the narrow minor groove near the centre of the B-DNA fragment, positioned over the A–T base pairs. It is bound to the DNA by hydrogen-bonding and van der Waals interactions. Comparison of the two structures (with and without ligand) shows that DAPI inserts into the minor groove, displacing the ordered spine waters. Indeed, as DAPI is hydrophobic it confers this behaviour on the DNA and thus restricts the presence of water molecules.


Sign in / Sign up

Export Citation Format

Share Document