ChemInform Abstract: Pitting Potential and Protection Potential of Carbon Steel for Chloride Ion and the Effectiveness of Different Inhibiting Anions.

ChemInform ◽  
2010 ◽  
Vol 22 (42) ◽  
pp. no-no ◽  
Author(s):  
M. ERGUN ◽  
A. Y. TURAN
1990 ◽  
Vol 213 ◽  
Author(s):  
R. A. Buchanan ◽  
J. G. Kim

ABSTRACTIn this study, an acid-chloride electrolyte at pH = 4 (H2SO4) and containing 200 ppm Cl- was used to define the effects of Cr concentration (0–6 at.%) and Mo additions (0–2 at.%) on the aqueous corrosion behavior of iron aluminides containing 28 at.% Al. For the Fe-28Al composition, cyclic-anodic-polarization testing indicated passivation, but with a relatively low breakdown potential for pitting corrosion, and a protection potential lower than the open-circuit corrosion potential. Cr additions alone proved beneficial by continuously increasing the pitting potential. However, even at the highest Cr level, 6%, the protection potential was still lower than the corrosion potential, indicating that pitting could initiate after an incubation period. Mo additions were found to raise the protection potential, such that at 1 and 2% Mo levels (4 % Cr), it was higher than the corrosion potential, indicating significantly improved resistance to the initiation of localized corrosion. Immersion testing showed that the latter compositions remained passivated with no localized corrosion for a period of four months, at which point the tests were terminated. The overall results indicated that for satisfactory resistance to chlorideinduced localized corrosion, both higher Cr levels (4–6 at.%) and Mo additions (1–2 at.%) are desirable.


2015 ◽  
Vol 98 ◽  
pp. 708-715 ◽  
Author(s):  
Samin Sharifi-Asl ◽  
Feixiong Mao ◽  
Pin Lu ◽  
Bruno Kursten ◽  
Digby D. Macdonald

2011 ◽  
Vol 347-353 ◽  
pp. 3135-3138
Author(s):  
Hong Hua Ge ◽  
Jie Ting Tao ◽  
Xiao Ming Gong ◽  
Cheng Jun Wei ◽  
Xue Min Xu

Abstract: The effect of electromagnetic treatment on corrosion behavior of carbon steel and stainless steel in simulated cooling water was investigated by electrochemical impedance spectroscopy, potentiodynamic polarization techniques and water analysis. It was found that the charge transfer resistance decreased and the corrosion current density increased after electromagnetic treatment for carbon steel electrode, which shows that such treatment promotes corrosion of carbon steel in simulated cooling water. In contrast, the pitting potential of 316L stainless steel electrode rose which revealed that electromagnetic treatment of the experimental water exhibited corrosion inhibition to 316L stainless steel. Reasons for different corrosion behavior of the two metals were discussed.


2019 ◽  
Vol 66 (5) ◽  
pp. 603-612
Author(s):  
Xiangyu Lu ◽  
Leyuan Zhang ◽  
Xingguo Feng ◽  
D. Chen ◽  
Yu Zuo

Purpose Aluminum tripolyphosphate was used as a corrosion inhibitor in a simulated concrete pore solution. For studies of the inhibition mechanism of aluminum tripolyphosphate on the carbon steel, its influence on the pitting initiation on the carbon steel in a Cl− containing pore solution were investigated. Design/methodology/approach Potentiodynamic polarization curves, Mott–Schottky plots and potentiostatic polarization of the carbon steel in the pore solution with different content of aluminum tripolyphosphate were measured, as well as the optical micrographs of pitting on the carbon steel was observed. Findings The metastable pitting potential and the stable pitting potential increased, while the donor density and the flat band potential decreased with the concentration of aluminum tripolyphosphate in solution. Furthermore, the initiation of pitting was suppressed, as well as the transition from metastable to stable pitting was hindered by the aluminum tripolyphosphate. The scale parameter (a), in the extreme distribution of the maximum current peak, could be used to predict the transition from metastable to stable pitting. Originality/value The inhibition mechanism of aluminum tripolyphosphate on carbon steel in pore solution was revealed. It suppresses the initiation of pitting and hinders the transition from metastable to stable pitting. Furthermore, a parameter defined as the scale parameter (a) in the extreme distribution of the maximum current peak was introduced to predict the transition from metastable to stable pitting.


1987 ◽  
Vol 36 (1) ◽  
pp. 23-26
Author(s):  
Atsushi Nishikata ◽  
Bao-Rong Hou ◽  
Dae-Hi Jeon ◽  
Tooru Tsuru ◽  
Shiro Haruyama

Sign in / Sign up

Export Citation Format

Share Document