ChemInform Abstract: Protein N-Glycosylation along the Secretory Pathway: Relationship to Organelle Topography and Function, Protein Quality Control, and Cell Interactions

ChemInform ◽  
2010 ◽  
Vol 33 (20) ◽  
pp. no-no
Author(s):  
Juergen Roth
2016 ◽  
Vol 60 (2) ◽  
pp. 227-235 ◽  
Author(s):  
Kathleen McCaffrey ◽  
Ineke Braakman

The ER (endoplasmic reticulum) is the protein folding ‘factory’ of the secretory pathway. Virtually all proteins destined for the plasma membrane, the extracellular space or other secretory compartments undergo folding and maturation within the ER. The ER hosts a unique PQC (protein quality control) system that allows specialized modifications such as glycosylation and disulfide bond formation essential for the correct folding and function of many secretory proteins. It is also the major checkpoint for misfolded or aggregation-prone proteins that may be toxic to the cell or extracellular environment. A failure of this system, due to aging or other factors, has therefore been implicated in a number of serious human diseases. In this article, we discuss several key features of ER PQC that maintain the health of the cellular secretome.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Matthew J Brody ◽  
Michelle A Sargent ◽  
Jeffery D Molkentin

p97 is a AAA-ATPase that plays critical roles in a myriad of cellular protein quality control processes, including the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway that targets misfolded proteins in the ER for degradation in the cytosol by the ubiquitin proteasome system. Mutations in p97 cause a multisystem degenerative proteinopathy disorder called inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD) that includes pathologies of the nervous system, skeletal muscle, bone, and heart. Previous studies in the laboratory into the mechanisms whereby thrombospondin 4 has its cardioprotective effects and enhanced ERAD activity identified p97 as a direct interacting partner. This observation suggested that p97 itself could be an important cardioprotective effector by benefiting protein quality control in the heart. To address this hypothesis here we generated cardiac-specific transgenic mice overexpressing wildtype p97 or a p97 K524A mutant with deficient ATPase activity, the latter of which functioned as a dominant negative. Mice overexpressing wildtype p97 exhibit normal cardiac structure and function while mutant p97 overexpressing mice develop cardiomyopathy, upregulate several ERAD complex components, and have elevated levels of ubiquitinated proteins. Proteomics and immunoprecipitation assays identified overwhelming interactions between endogenous p97 and a number of interesting protein complexes that suggest unique functions for this protein in regulating protein quality control in the heart. The results and novel regulatory relationships will be presented, which suggests entirely unique pathways whereby p97 functions in the heart.


2019 ◽  
Vol 20 (24) ◽  
pp. 6220 ◽  
Author(s):  
Joan Castells-Ballester ◽  
Natalie Rinis ◽  
Ilgin Kotan ◽  
Lihi Gal ◽  
Daniela Bausewein ◽  
...  

O-mannosylation is implicated in protein quality control in Saccharomyces cerevisiae due to the attachment of mannose to serine and threonine residues of un- or misfolded proteins in the endoplasmic reticulum (ER). This process also designated as unfolded protein O-mannosylation (UPOM) that ends futile folding cycles and saves cellular resources is mainly mediated by protein O-mannosyltransferases Pmt1 and Pmt2. Here we describe a genetic screen for factors that influence O-mannosylation in yeast, using slow-folding green fluorescent protein (GFP) as a reporter. Our screening identifies the RNA binding protein brefeldin A resistance factor 1 (Bfr1) that has not been linked to O-mannosylation and ER protein quality control before. We find that Bfr1 affects O-mannosylation through changes in Pmt1 and Pmt2 protein abundance but has no effect on PMT1 and PMT2 transcript levels, mRNA localization to the ER membrane or protein stability. Ribosome profiling reveals that Bfr1 is a crucial factor for Pmt1 and Pmt2 translation thereby affecting unfolded protein O-mannosylation. Our results uncover a new level of regulation of protein quality control in the secretory pathway.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 323-OR
Author(s):  
RACHEL B. REINERT ◽  
XIANWEI CUI ◽  
NEHA SHRESTHA ◽  
LING QI

2019 ◽  
Author(s):  
Joan Castells-Ballester ◽  
Natalie Rinis ◽  
Ilgin Kotan ◽  
Lihi Gal ◽  
Daniela Bausewein ◽  
...  

ABSTRACTO-mannosylation is implicated in protein quality control in Saccharomyces cerevisiae due to the attachment of mannose to serine and threonine residues of un- or misfolded proteins in the endoplasmic reticulum (ER). This process also designated as unfolded protein O-mannosylation (UPOM) that ends futile folding cycles and saves cellular resources is mainly mediated by protein O-mannosyltransferases Pmt1 and Pmt2. Here we describe a genetic screen for factors that influence O-mannosylation in yeast, using slow-folding GFP as a reporter. Our screening identifies the RNA binding protein brefeldin A resistance factor 1 (Bfr1) that has not been linked to O-mannosylation and ER protein quality control before. We find that Bfr1 affects O-mannosylation through changes in Pmt1 and Pmt2 protein abundance, but has no effect on PMT1 and PMT2 transcript levels, mRNA localization to the ER membrane or protein stability. Ribosome profiling reveals that Bfr1 is a crucial factor for Pmt1 and Pmt2 translation thereby affecting unfolded protein O-mannosylation. Our results uncover a new level of regulation of protein quality control in the secretory pathway.


Sign in / Sign up

Export Citation Format

Share Document