Strong Counteranion Effects on the Catalytic Activity of Cationic Silicon Lewis Acids in Mukaiyama Aldol and Diels—Alder Reactions.

ChemInform ◽  
2006 ◽  
Vol 37 (17) ◽  
Author(s):  
Kenji Hara ◽  
Ryuto Akiyama ◽  
Masaya Sawamura
2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Carlos A. D. Sousa ◽  
José E. Rodríguez-Borges ◽  
Cristina Freire

New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 394 ◽  
Author(s):  
Mizuki Moriyama ◽  
Kohei Nakata ◽  
Tetsuya Fujiwara ◽  
Yoo Tanabe

All four chiral pestalotin diastereomers were synthesized in a straightforward and divergent manner from common (R)-glycidol. Catalytic asymmetric Mukaiyama aldol reactions of readily-available bis(TMSO)diene (Chan’s diene) with (S)-2-benzyloxyhexanal derived from (R)-glycidol produced a syn-aldol adduct with high diastereoselectivity and enantioselectivity using a Ti(iOPr)4/(S)-BINOL/LiCl catalyst. Diastereoselective Mukaiyama aldol reactions mediated by catalytic achiral Lewis acids directly produced not only a (1′S,6S)-pyrone precursor via the syn-aldol adduct using TiCl4, but also (1′S,6R)-pyrone precursor via the antialdol adduct using ZrCl4, in a stereocomplementary manner. A Hetero-Diels-Alder reaction of similarly available mono(TMSO)diene (Brassard’s diene) with (S)-2-benzyloxyhexanal produced the (1′S,6S)-pyrone precursor promoted by Eu(fod)3 and the (1′S,6R)-pyrone precursor Et2AlCl. Debenzylation of the (1′S,6S)-precursor and the (1′S,6R)-precursor furnished natural (−)-pestalotin (99% ee, 7 steps) and unnatural (+)-epipestalotin (99% ee, 7 steps), respectively. Mitsunobu inversions of the obtained (−)-pestalotin and (+)-epipestalotin successfully produced the unnatural (+)-pestalotin (99% ee, 9 steps) and (−)-epipestalotin (99% ee, 9 steps), respectively, in a divergent manner. All four of the obtained chiral pestalotin diastereomers possessed high chemical and optical purities (optical rotations, 1H-NMR, 13C-NMR, and HPLC measurements).


Organics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 38-49
Author(s):  
Lakhdar Benhamed ◽  
Sidi Mohamed Mekelleche ◽  
Wafaa Benchouk

Experimentally, a reversal of chemoselectivity has been observed in catalyzed Diels–Alder reactions of α,β-unsaturated aldehydes (e.g., (2E)-but-2-enal) and ketones (e.g., 2-hexen-4-one) with cyclopentadiene. Indeed, using the triflimidic Brønsted acid Tf2NH as catalyst, the reaction gave a Diels–Alder adduct derived from α,β-unsaturated ketone as a major product. On the other hand, the use of tris(pentafluorophenyl)borane B(C6F5)3 bulky Lewis acid as catalyst gave mainly the cycloadduct of α,β-unsaturated aldehyde as a major product. Our aim in the present work is to put in evidence the role of the catalyst in the reversal of the chemoselectivity of the catalyzed Diels–Alder reactions of (2E)-but-2-enal and 2-Hexen-4-one with cyclopentadiene. The calculations were performed at the ωB97XD/6-311G(d,p) level of theory and the solvent effects of dichloromethane were taken into account using the PCM solvation model. The obtained results are in good agreement with experimental outcomes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karolina Kula ◽  
Agnieszka Kącka-Zych ◽  
Agnieszka Łapczuk-Krygier ◽  
Radomir Jasiński

Abstract The large and significant increase in carbon dioxide concentration in the Earth’s atmosphere is a serious problem for humanity. The amount of CO2 is increasing steadily which causes a harmful greenhouse effect that damages the Earth’s climate. Therefore, one of the current trends in modern chemistry and chemical technology are issues related to its utilization. This work includes the analysis of the possibility of chemical consumption of CO2 in Diels-Alder processes under non-catalytic and catalytic conditions after prior activation of the C=O bond. In addition to the obvious benefits associated with CO2 utilization, such processes open up the possibility of universal synthesis of a wide range of internal carboxylates. These studies have been performed in the framework of Molecular Electron Density Theory as a modern view of the chemical reactivity. It has been found, that explored DA reactions catalyzed by Lewis acids with the boron core, proceeds via unique stepwise mechanism with the zwitterionic intermediate. Bonding Evolution Theory (BET) analysis of the molecular mechanism associated with the DA reaction between cyclopentadiene and carbon dioxide indicates that it takes place thorough a two-stage one-step mechanism, which is initialized by formation of C–C single bond. In turn, the DA reaction between cyclopentadiene and carbon dioxide catalysed by BH3 extends in the environment of DCM, indicates that it takes place through a two-step mechanism. First path of catalysed DA reaction is characterized by 10 different phases, while the second by eight topologically different phases.


2008 ◽  
Vol 61 (8) ◽  
pp. 610 ◽  
Author(s):  
Guozhi Fan ◽  
Hanjun Zhang ◽  
Siqing Cheng ◽  
Zhandong Ren ◽  
Zhijun Hu ◽  
...  

Palladium chloride anchored on polystyrene modified by 5-amino-1,10-phenanthroline was prepared and used as an efficient recoverable catalyst for Suzuki cross-coupling reactions. The heterogeneous catalysts can be easily separated from the reaction mixture and reused for five cycles without significant Pd leaching and loss of catalytic activity. Rate enhancement in the Suzuki reaction by Lewis acids was also studied.


1971 ◽  
Vol 49 (19) ◽  
pp. 3152-3157 ◽  
Author(s):  
A. W. Mcculloch ◽  
A. G. McInnes

The AlCl3-promoted reactions of 2-methyl- and of 2-phenylfuran with ethyl propiolate afford as major products ethyl 5-hydroxy-2-methyl- and 2-phenylbenzoates (6a, 6b). Also isolated as minor by-products of these reactions are ethyl 3-(2-furyl-5-methyl)acrylate (5a), ethyl 3-(2-furyl-5-phenyl)acrylate (5b), ethyl 3,3-di(2-furyl-5-methyl)propionate (10a), ethyl 3,3-di(2-furyl-5-phenyl)propionate (10b), and ethyl 2-hydroxy-5-methylbenzoate (8a).


ChemInform ◽  
2015 ◽  
Vol 46 (46) ◽  
pp. no-no
Author(s):  
Etienne J. Donckele ◽  
Aaron D. Finke ◽  
Laurent Ruhlmann ◽  
Corinne Boudon ◽  
Nils Trapp ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document