Copper Homeostasis and Neurodegenerative Disorders (Alzheimer′s, Prion, and Parkinson′s Diseases and Amyotrophic Lateral Sclerosis)

ChemInform ◽  
2006 ◽  
Vol 37 (37) ◽  
Author(s):  
Elena Gaggelli ◽  
Henryk Kozlowski ◽  
Daniela Valensin ◽  
Gianni Valensin
2021 ◽  
Vol 15 ◽  
Author(s):  
Caterina Peggion ◽  
Maria Lina Massimino ◽  
Roberto Stella ◽  
Raissa Bortolotto ◽  
Jessica Agostini ◽  
...  

TDP-43 is a nuclear protein involved in pivotal processes, extensively studied for its implication in neurodegenerative disorders. TDP-43 cytosolic inclusions are a common neuropathologic hallmark in amyotrophic lateral sclerosis (ALS) and related diseases, and it is now established that TDP-43 misfolding and aggregation play a key role in their etiopathology. TDP-43 neurotoxic mechanisms are not yet clarified, but the identification of proteins able to modulate TDP-43-mediated damage may be promising therapeutic targets for TDP-43 proteinopathies. Here we show by the use of refined yeast models that the nucleolar protein nucleolin (NCL) acts as a potent suppressor of TDP-43 toxicity, restoring cell viability. We provide evidence that NCL co-expression is able to alleviate TDP-43-induced damage also in human cells, further supporting its beneficial effects in a more consistent pathophysiological context. Presented data suggest that NCL could promote TDP-43 nuclear retention, reducing the formation of toxic cytosolic TDP-43 inclusions.


2019 ◽  
Vol 28 (R2) ◽  
pp. R187-R196 ◽  
Author(s):  
Michael Fernandopulle ◽  
GuoZhen Wang ◽  
Jonathon Nixon-Abell ◽  
Seema Qamar ◽  
Varun Balaji ◽  
...  

Abstract Recent work on the biophysics of proteins with low complexity, intrinsically disordered domains that have the capacity to form biological condensates has profoundly altered the concepts about the pathogenesis of inherited and sporadic neurodegenerative disorders associated with pathological accumulation of these proteins. In the present review, we use the FUS, TDP-43 and A11 proteins as examples to illustrate how missense mutations and aberrant post-translational modifications of these proteins cause amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD).


2009 ◽  
Vol 187 (6) ◽  
pp. 761-772 ◽  
Author(s):  
Hristelina Ilieva ◽  
Magdalini Polymenidou ◽  
Don W. Cleveland

Selective degeneration and death of one or more classes of neurons is the defining feature of human neurodegenerative disease. Although traditionally viewed as diseases mainly affecting the most vulnerable neurons, in most instances of inherited disease the causative genes are widely—usually ubiquitously—expressed. Focusing on amyotrophic lateral sclerosis (ALS), especially disease caused by dominant mutations in Cu/Zn superoxide dismutase (SOD1), we review here the evidence that it is the convergence of damage developed within multiple cell types, including within neighboring nonneuronal supporting cells, which is crucial to neuronal dysfunction. Damage to a specific set of key partner cells as well as to vulnerable neurons may account for the selective susceptibility of neuronal subtypes in many human neurodegenerative diseases, including Huntington's disease (HD), Parkinson's disease (PD), prion disease, the spinal cerebellar ataxias (SCAs), and Alzheimer's disease (AD).


Author(s):  
Francisco J Gil-Bea ◽  
Garazi Aldanondo ◽  
Haizpea Lasa-Fernández ◽  
Adolfo López de Munain ◽  
Ainara Vallejo-Illarramendi

Amyotrophic lateral sclerosis (ALS) is a severe neuromuscular disease characterised by a progressive loss of motor neurons that usually results in paralysis and death within 2 to 5 years after disease onset. The pathophysiological mechanisms involved in ALS remain largely unknown and to date there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of copper homeostasis in the central nervous system is a crucial underlying event in motor neuron degeneration and ALS pathophysiology. We also review and discuss novel approaches seeking to target copper delivery to treat ALS. These novel approaches may be clinically relevant not only for ALS but also for other neurological disorders with abnormal copper homeostasis, such as Parkinson's, Huntington's and Prion diseases.


2020 ◽  
Vol 27 (26) ◽  
pp. 4401-4420 ◽  
Author(s):  
Danka Bukvicki ◽  
Davide Gottardi ◽  
Sahdeo Prasad ◽  
Miroslav Novakovic ◽  
Petar D. Marin ◽  
...  

Spices are not only just herbs used in culinary for improving the taste of dishes, they are also sources of a numerous bioactive compounds significantly beneficial for health. They have been used since ancient times because of their antimicrobial, anti-inflammatory and carminative properties. Several scientific studies have suggested their protective role against chronic diseases. In fact, their active compounds may help in arthritis, neurodegenerative disorders (Alzheimer’s, Parkinson, Huntington’s disease, amyotrophic lateral sclerosis, etc.), diabetes, sore muscles, gastrointestinal problems and many more. In the present study, possible roles of spices and their active components, in chronic diseases (cancer, arthritis, cardiovascular diseases, etc.) along with their mechanism of action have been reviewed.


2020 ◽  
Vol 91 (6) ◽  
pp. 671-672
Author(s):  
Catarina Falcão Campos ◽  
Marta Gromicho ◽  
Hilmi Uysal ◽  
Julian Grosskreutz ◽  
Magdalena Kuzma-Kozakiewicz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document