copper delivery
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 1)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 125
Author(s):  
Abhinav B. Swaminathan ◽  
Vishal M. Gohil

Copper is essential for the stability and activity of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Copper is bound to COX1 and COX2, two core subunits of CcO, forming the CuB and CuA sites, respectively. Biogenesis of these two copper sites of CcO occurs separately and requires a number of evolutionarily conserved proteins that form the mitochondrial copper delivery pathway. Pathogenic mutations in some of the proteins of the copper delivery pathway, such as SCO1, SCO2, and COA6, have been shown to cause fatal infantile human disorders, highlighting the biomedical significance of understanding copper delivery mechanisms to CcO. While two decades of studies have provided a clearer picture regarding the biochemical roles of SCO1 and SCO2 proteins, some discrepancy exists regarding the function of COA6, the new member of this pathway. Initial genetic and biochemical studies have linked COA6 with copper delivery to COX2 and follow-up structural and functional studies have shown that it is specifically required for the biogenesis of the CuA site by acting as a disulfide reductase of SCO and COX2 proteins. Its role as a copper metallochaperone has also been proposed. Here, we critically review the recent literature regarding the molecular function of COA6 in CuA biogenesis.


2021 ◽  
pp. 101445
Author(s):  
Rose C. Hadley ◽  
Daniel Zhitnitsky ◽  
Nurit Livnat-Levanon ◽  
Gal Masrati ◽  
Elena Vigonsky ◽  
...  

2021 ◽  
pp. 153537022110465
Author(s):  
Na Wang ◽  
Xinwen Xu ◽  
Hualin Li ◽  
Qipu Feng ◽  
Hongge Wang ◽  
...  

Dietary cholesterol supplements cause hypercholesterolemia and atherosclerosis along with a reduction of copper concentrations in the atherosclerotic wall in animal models. This study was to determine if target-specific copper delivery to the copper-deficient atherosclerotic wall can block the pathogenesis of atherosclerosis. Male New Zealand white rabbits, 10-weeks-old and averaged 2.0 kg, were fed a diet containing 1% (w/w) cholesterol or the same diet without cholesterol as control. Twelve weeks after the feeding, the animals were injected with copper-albumin microbubbles and subjected to ultrasound sonication specifically directed at the atherosclerotic lesions (Cu-MB-US) for target-specific copper delivery, twice a week for four weeks. This regiment was repeated 3 times with a gap of two weeks in between. Two weeks after the last treatment, the animals were harvested for analyses of serum and aortic pathological changes. Compared to controls, rabbits fed cholesterol-rich diet developed atherosclerotic lesion with a reduction in copper concentrations in the lesion tissue. Cu-MB-US treatment significantly increased copper concentrations in the lesion, and reduced the size of the lesion. Furthermore, copper repletion reduced the number of apoptotic cells as well as the content of cholesterol and phospholipids in the atherosclerotic lesion without a disturbance of the stability of the lesion. The results thus demonstrate that target-specific copper supplementation suppresses the progression of atherosclerosis at least in part through preventing endothelial cell death, thus reducing lipid infiltration in the atherosclerotic lesion.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1336
Author(s):  
Kateryna Ohui ◽  
Iryna Stepanenko ◽  
Iuliana Besleaga ◽  
Maria V. Babak ◽  
Radu Stafi ◽  
...  

Thiosemicarbazones continue to attract the interest of researchers as potential anticancer drugs. For example, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, or triapine, is the most well-known representative of this class of compounds that has entered multiple phase I and II clinical trials. Two new triapine derivatives HL1 and HL2 were prepared by condensation reactions of 2-pyridinamidrazone and S-methylisothiosemicarbazidium chloride with 3-N-(tert-butyloxycarbonyl) amino-pyridine-2-carboxaldehyde, followed by a Boc-deprotection procedure. Subsequent reaction of HL1 and HL2 with CuCl2·2H2O in 1:1 molar ratio in methanol produced the complexes [CuII(HL1)Cl2]·H2O (1·H2O) and [CuII(HL2)Cl2] (2). The reaction of HL2 with Fe(NO3)3∙9H2O in 2:1 molar ratio in the presence of triethylamine afforded the complex [FeIII(L2)2]NO3∙0.75H2O (3∙0.75H2O), in which the isothiosemicarbazone acts as a tridentate monoanionic ligand. The crystal structures of HL1, HL2 and metal complexes 1 and 2 were determined by single crystal X-ray diffraction. The UV-Vis and EPR spectroelectrochemical measurements revealed that complexes 1 and 2 underwent irreversible reduction of Cu(II) with subsequent ligand release, while 3 showed an almost reversible electrochemical reduction in dimethyl sulfoxide (DMSO). Aqueous solution behaviour of HL1 and 1, as well as of HL2 and its complex 2, was monitored as well. Complexes 1−3 were tested against ovarian carcinoma cells, as well as noncancerous embryonic kidney cells, in comparison to respective free ligands, triapine and cisplatin. While the free ligands HL1 and HL2 were devoid of antiproliferative activity, their respective metal complexes showed remarkable antiproliferative activity in a micromolar concentration range. The activity was not related to the inhibition of ribonucleotide reductase (RNR) R2 protein, but rather to cancer cell homeostasis disturbance—leading to the disruption of cancer cell signalling.


Author(s):  
Barry J Shelp ◽  
Edward J Flaherty ◽  
Skye Duncan Stephens ◽  
Alyna J Donetz

Moderate levels of zinc (3.50, 1.75 or 0.875 μmol L-1) or copper (0.75, 0.38 or 0.19 μmol L-1), in combination with a complete suite of other essential nutrients, were supplied up to flower bud break only, to two cultivars of subirrigated, potted, pinched chrysanthemums. Market-quality plants were produced with sufficient leaf-zinc or leaf-copper even though the delivery of the respective nutrient could be reduced by 75%, compared to an industry standard. These results are interpreted as evidence for improved uptake efficiency with decreasing Zn or Cu delivery. Our modified delivery practice could contribute to low-input production of floricultural crops.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 500
Author(s):  
Stefanie D. Boyd ◽  
Morgan S. Ullrich ◽  
Amelie Skopp ◽  
Duane D. Winkler

Copper ions (i.e., copper) are a critical part of several cellular processes, but tight regulation of copper levels and trafficking are required to keep the cell protected from this highly reactive transition metal. Cu, Zn superoxide dismutase (Sod1) protects the cell from the accumulation of radical oxygen species by way of the redox cycling activity of copper in its catalytic center. Multiple posttranslational modification events, including copper incorporation, are reliant on the copper chaperone for Sod1 (Ccs). The high-affinity copper uptake protein (Ctr1) is the main entry point of copper into eukaryotic cells and can directly supply copper to Ccs along with other known intracellular chaperones and trafficking molecules. This review explores the routes of copper delivery that are utilized to activate Sod1 and the usefulness and necessity of each.


2020 ◽  
Author(s):  
MV Capparelli ◽  
JC McNamara ◽  
MG Grosell

AbstractWe examined copper accumulation in the hemolymph, gills and hepatopancreas, and hemolymph osmolality, Na+ and Cl- concentrations, together with gill Na+/K+-ATPase and carbonic anhydrase activities, after dietary copper delivery (0, 100 or 500 µg Cu/g) for 12 days in a fiddler crab, Minuca rapax. In contaminated crabs, copper concentration decreased in the hemolymph and hepatopancreas, but increased in the gills. Hemolymph osmolality and gill Na+/K+-ATPase activity increased while hemolymph [Na+] and [Cl-] and gill carbonic anhydrase activity decreased. Excretion likely accounts for the decreased hemolymph and hepatopancreas copper titers. Dietary copper clearly affects osmoregulatory ability and hemolymph Na+ and Cl- regulation in M. rapax. Gill copper accumulation decreased carbonic anhydrase activity, suggesting that dietary copper affects acid-base balance. Elevated gill Na+/K+-ATPase activity appears to compensate for the ion-regulatory disturbance. These effects of dietary copper illustrate likely impacts on semi-terrestrial species that feed on metal contaminated sediments.


2020 ◽  
Vol 56 (78) ◽  
pp. 11589-11592 ◽  
Author(s):  
Zan Li ◽  
Taiyu Guo ◽  
Jiao Lu ◽  
Zhen Yang ◽  
Miaomiao Zhang ◽  
...  

Targeted copper delivery endows M985 with the capacity of detecting cancer cells in the fluorescence and 19F NMR mode.


2019 ◽  
Author(s):  
Huajin Sheng ◽  
Yulin Jiang ◽  
Maryam Rahmati Ishka ◽  
Ju-Chen Chia ◽  
Tatyana Dokuchayeva ◽  
...  

AbstractAddressing the looming global food security crisis requires the development of high yielding crops. In this regard, the deficiency for the micronutrient copper in agricultural soils decreases grain yield and significantly impacts a globally important crop, wheat. In cereals, grain yield is determined by inflorescence architecture, flower fertility, grain size and weight. Whether copper is involved in these processes and how it is delivered to the reproductive organs is not well understood. We show that copper deficiency alters not only the grain set but also flower development in both wheat and it’s recognized model, Brachypodium distachyon, We then show that a brachypodium yellow-stripe-like 3 (YSL3) transporter localizes to the phloem and mediates copper delivery to flag leaves, anthers and pistils. Failure to deliver copper to these structures in the ysl3 CRISPR/Cas9 mutant results in delayed flowering, altered inflorescence architecture, reduced floret fertility, grain number, size, and weight. These defects are rescued by copper supplementation and are complemented by the YSL3 cDNA. This new knowledge will help to devise sustainable approaches for improving grain yield in regions where soil quality is a major obstacle for crop production.


Sign in / Sign up

Export Citation Format

Share Document