ChemInform Abstract: The Discovery of Novel Calcium Sensing Receptor Negative Allosteric Modulators.

ChemInform ◽  
2009 ◽  
Vol 40 (44) ◽  
Author(s):  
David W. Piotrowski ◽  
et al. et al.
2020 ◽  
Vol 117 (35) ◽  
pp. 21711-21722
Author(s):  
Hongkang Liu ◽  
Ping Yi ◽  
Wenjing Zhao ◽  
Yuling Wu ◽  
Francine Acher ◽  
...  

Many membrane receptors are regulated by nutrients. However, how these nutrients control a single receptor remains unknown, even in the case of the well-studied calcium-sensing receptor CaSR, which is regulated by multiple factors, including ions and amino acids. Here, we developed an innovative cell-free Förster resonance energy transfer (FRET)-based conformational CaSR biosensor to clarify the main conformational changes associated with activation. By allowing a perfect control of ambient nutrients, this assay revealed that Ca2+alone fully stabilizes the active conformation, while amino acids behave as pure positive allosteric modulators. Based on the identification of Ca2+activation sites, we propose a molecular basis for how these different ligands cooperate to control CaSR activation. Our results provide important information on CaSR function and improve our understanding of the effects of genetic mutations responsible for human diseases. They also provide insights into how a receptor can integrate signals from various nutrients to better adapt to the cell response.


2018 ◽  
Vol 175 (21) ◽  
pp. 4095-4108 ◽  
Author(s):  
Natalie A Diepenhorst ◽  
Katie Leach ◽  
Andrew N Keller ◽  
Patricia Rueda ◽  
Anna E Cook ◽  
...  

2013 ◽  
Vol 98 (10) ◽  
pp. E1692-E1701 ◽  
Author(s):  
Akie Nakamura ◽  
Tomoyuki Hotsubo ◽  
Keiji Kobayashi ◽  
Hiroshi Mochizuki ◽  
Katsura Ishizu ◽  
...  

Abstract Objective: Activating mutations in the calcium-sensing receptor (CASR) gene cause autosomal dominant hypoparathyroidism, and heterozygous inactivating CASR mutations cause familial hypocalciuric hypercalcemia. Recently, there has been a focus on the use of allosteric modulators to restore the functional activity of mutant CASRs. In this study, the effect of allosteric modulators NPS R-568 and NPS 2143 on CASR mutants was studied in vitro. Methods: DNA sequence analysis of the CASR gene was undertaken in autosomal dominant hypoparathyroidism and familial hypocalciuric hypercalcemia Japanese patients, and the functional consequences for the Gi-MAPK pathway and cell surface expression of CASR were determined. Furthermore, we studied the effect of NPS R-568 and NPS 2143 on the signal transduction activity and cell surface expression of each mutant CASR. Results: We identified 3 activating mutations (S122C, P569H, and I839T) and 2 inactivating mutations (A110T and R172G) in patients. The activating and inactivating mutations caused leftward and rightward shifts, respectively, in the dose-response curves of the signaling pathway. NPS R-568 rescued the signal transduction capacity of 2 inactivating mutants without increasing cell surface expression levels. NPS 2143 suppressed the enhanced activity of the activating mutants without altering cell surface expression levels, although A843E, which is a constitutively active mutant, was suppressed to a lesser degree. Conclusions: We have identified 4 novel mutations of CASR. Moreover, our results indicate that allosteric modulators can restore the activity of the loss- and gain-of-function mutant CASRs, identified in this study.


2010 ◽  
Vol 20 (19) ◽  
pp. 5918-5921 ◽  
Author(s):  
Magnus Gustafsson ◽  
Jacob Jensen ◽  
Sine M. Bertozzi ◽  
Erika A. Currier ◽  
Jian-Nong Ma ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 1105-1116 ◽  
Author(s):  
Katie Leach ◽  
Adriel Wen ◽  
Anna E. Cook ◽  
Patrick M. Sexton ◽  
Arthur D. Conigrave ◽  
...  

Abstract Cinacalcet is predominantly used to treat secondary hyperparathyroidism due to end-stage renal failure, but, more recently, its potential clinical efficacy in treating patients with loss-of-function mutations in the calcium-sensing receptor (CaSR) has been recognized. Many clinically relevant CaSR mutations are located in the heptahelical membrane spanning and extracellular loop regions of the receptor, where allosteric modulators are predicted to bind. The aim of the present study was to investigate the impact of such mutations on the pharmacoregulation of the CaSR by the positive and negative allosteric modulators, cinacalcet and NPS-2143, respectively. Both cinacalcet and NPS-2143 effectively rescued mutants whose cell surface expression was substantially impaired, suggesting that both classes of drug can stabilize a receptor conformation that is trafficked more effectively to the cell surface. In addition, functional impairments in almost all mutant CaSRs were rescued by either cinacalcet or NPS-2143 via restoration of intracellular signaling. There was a significantly greater ability of both compounds to modulate agonist-stimulated intracellular Ca2+ mobilization than ERK1/2 phosphorylation, indicating that the allosteric modulators engender bias in agonist-stimulated CaSR signaling to different pathways. Three mutations (G670R, P748R, and L773R) altered the binding affinity of allosteric modulators to the CaSR, and 3 mutations (V817I, L773R, and E767K) altered the cooperativity between the allosteric modulator and Ca2+o. These findings have important implications for the treatment of diseases associated with CaSR mutations using allosteric CaSR modulators and for analyzing the effects of mutations on the function and pharmacoregulation of the CaSR.


ChemMedChem ◽  
2021 ◽  
Author(s):  
Le Vi Dinh ◽  
Aaron DeBono ◽  
Andrew Keller ◽  
Tracy Josephs ◽  
Karen Gregory ◽  
...  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Daniel Bikle ◽  
Hans Bräuner-Osborne ◽  
Edward M. Brown ◽  
Wenhan Chang ◽  
Arthur Conigrave ◽  
...  

The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [47] and subsequently updated [77]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [78]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 110], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [36, 47, 61, 108, 109]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [148, 54]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [18] or decreased extracellular ionic strength [109]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS.


2015 ◽  
Vol 3 (11) ◽  
pp. e12616 ◽  
Author(s):  
Solange Abdulnour-Nakhoul ◽  
Karen L. Brown ◽  
Edd C. Rabon ◽  
Youhanna Al-Tawil ◽  
Mohammed T. Islam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document