ChemInform Abstract: Development of Antibacterial Agents Active Against Drug-Resistant Bacterial Pathogens Based on Total Synthesis of Nucleoside Natural Products

ChemInform ◽  
2012 ◽  
Vol 43 (7) ◽  
pp. no-no
Author(s):  
Satoshi Ichikawa ◽  
Tetsuya Tanino ◽  
Kensuke Ii ◽  
Akira Matsuda
Medicina ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 343
Author(s):  
Mohammed S. Al-Mogbel ◽  
Godfred A. Menezes ◽  
Mohamed T. Elabbasy ◽  
Manal M. Alkhulaifi ◽  
Ashfaque Hossain ◽  
...  

Background and Objectives: The multidrug resistant (MDR) bacterial pathogenic infection is one of the chief worldwide public health threat to humanity. The development of novel antibiotics against MDR Gram negative bacteria has reduced over the last half century. Research is in progress regarding the treatment strategies that could be engaged in combination with antibiotics to extend the duration of these life-saving antibacterial agents. The current study was therefore planned to assess the synergistic effects of bovine lactoferrin (bLF) in combination with different antibiotics that are conventionally used. This synergism would provide a newer therapeutic choice against MDR pathogens. LF is present in mucosal secretions, vastly in milk. LF is considered an important constituent in host defense. In previous reports, LF has been co-administered as a combination antibiotic therapy. Materials and Methods: This study included synergistic (LF + appropriate antibiotic) exposure against 147 locally encountered bacterial pathogens, which were completely characterized strains. The anti-biofilm effects and the outcome of bLF on minimum inhibitory concentrations (MICs) of antibacterials on clinical MDR bacterial pathogens were determined by standard techniques. Results: In our study, synergism of bLF with antibacterial agents were reproducible and found to be significant. LF on its own had an important effect of inhibiting the biofilm production of some significant bacterial pathogens. Conclusion: The results of this study provides useful data on the antibacterial potential of the combination of LF with antibiotics against drug resistant pathogens.


2020 ◽  
Vol 17 ◽  
Author(s):  
Majid M. Heravi ◽  
Tayebe Momeni ◽  
Vahideh Zadsirjan ◽  
Leila Mohammadi

: Dess–Martin periodinane (DMP), is a commercially available chemical, frequently being utilized as a mild oxidative agent for the selective oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones, respectively. DMP shows several merits over other common oxidative agent such as chromium- and DMSO-based oxidants, thus it is habitually employed in the total synthesis of natural products. In this review, we try to underscore the applications of DMP as an effective oxidant in an appropriate step (steps) in the multistep total synthesis of natural products.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 720
Author(s):  
Satomi Niwayama

Symmetric organic compounds are generally obtained inexpensively, and therefore they can be attractive building blocks for the total synthesis of various pharmaceuticals and natural products. The drawback is that discriminating the identical functional groups in the symmetric compounds is difficult. Water is the most environmentally benign and inexpensive solvent. However, successful organic reactions in water are rather limited due to the hydrophobicity of organic compounds in general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile strategies for the synthesis of a variety of significant organic compounds. This review focuses on the recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media without utilizing enzymes.


2021 ◽  
Vol 57 (27) ◽  
pp. 3307-3322
Author(s):  
Debobrata Paul ◽  
Ashis Kundu ◽  
Sanu Saha ◽  
Rajib Kumar Goswami

This feature article highlights total synthesis as one of the reliable tools for the structural confirmation of natural products.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 321
Author(s):  
Shekh Sabir ◽  
Tsz Tin Yu ◽  
Rajesh Kuppusamy ◽  
Basmah Almohaywi ◽  
George Iskander ◽  
...  

The quorum sensing (QS) system in multi-drug-resistant bacteria such as P. aeruginosa is primarily responsible for the development of antibiotic resistance and is considered an attractive target for antimicrobial drug discovery. In this study, we synthesised a series of novel selenourea and thiourea-containing dihydropyrrol-2-one (DHP) analogues as LasR antagonists. The selenium DHP derivatives displayed significantly better quorum-sensing inhibition (QSI) activities than the corresponding sulphur analogues. The most potent analogue 3e efficiently inhibited the las QS system by 81% at 125 µM and 53% at 31 µM. Additionally, all the compounds were screened for their minimum inhibitory concentration (MIC) against the Gram-positive bacterium S. aureus, and interestingly, only the selenium analogues showed antibacterial activity, with 3c and 3e being the most potent with a MIC of 15.6 µM.


Sign in / Sign up

Export Citation Format

Share Document