quorum sensing inhibition
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 40)

H-INDEX

18
(FIVE YEARS 5)

Author(s):  
Ramachandran Chelliah ◽  
Eric Banan-MwineDaliri ◽  
Deog-Hwan Oh

2021 ◽  
Vol 6 (4) ◽  
pp. 360-368
Author(s):  
Yue Liu ◽  
Jun-Jian Li ◽  
Hong-Yuan Li ◽  
Shi-Ming Deng ◽  
Ai-Qun Jia

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arpit Shukla ◽  
Gaurav Shukla ◽  
Paritosh Parmar ◽  
Baldev Patel ◽  
Dweipayan Goswami ◽  
...  

AbstractThere persists a constant threat from multidrug resistance being acquired by all human pathogens that challenges the well-being of humans. This phenomenon is predominantly led by Pseudomonas aeruginosa which is already resistant to the current generations of antibiotic by altering its metabolic pathways to survive. Specifically for this microbe the phenomenon of quorum sensing (QS) plays a crucial role in acquiring virulence and pathogenicity. QS is simply the cross talk between the bacterial community driven by signals that bind to receptors, enabling the entire bacterial microcosm to function as a single unit which has led to control P. aeruginosa cumbersome even in presence of antibiotics. Inhibition of QS can, therefore, be of a significant importance to curb such virulent and pathogenic strains of P. aeruginosa. Natural compounds are well known for their antimicrobial properties, of which, information on their mode of action is scarce. There can be many antimicrobial phytochemicals that act by hindering QS-pathways. The rationale of the current study is to identify such natural compounds that can inhibit QS in P. aeruginosa driven by LasR, PhzR, and RhlR dependent pathways. To achieve this rationale, in silico studies were first performed to identify such natural compounds which were then validated by in vitro experiments. Gingerol and Curcumin were identified as QS-antagonists (QSA) which could further suppress the production of biofilm, EPS, pyocyanin, and rhamnolipid along with improving the susceptibility to antibiotics.


2021 ◽  
pp. 100992
Author(s):  
Nicole R. Rutbeek ◽  
Hanieh Rezasoltani ◽  
Trushar R. Patel ◽  
Mazdak Khajehpour ◽  
Gerd Prehna

2021 ◽  
Author(s):  
Nicole R. Rutbeek ◽  
Hanieh Rezasoltani ◽  
Trushar R. Patel ◽  
Mazdak Khajehpour ◽  
Gerd Prehna

Streptococcus pyogenes, or Group A Streptococcus, is a Gram-positive bacterium that can be both a human commensal and pathogen. Central to this dichotomy are temperate bacteriophages that incorporate into the bacterial genome as a prophage. These genetic elements encode both the phage proteins as well as toxins harmful to the human host. One such conserved phage protein paratox (Prx) is always found encoded adjacent to the toxin genes and this linkage is preserved during transduction. Within Streptococcus pyogenes, Prx functions to inhibit the quorum-sensing ComRS receptor-signal pair that is the master regulator of natural competence, or the ability to uptake endogenous DNA. Specifically, Prx directly binds and inhibits the receptor ComR by unknown mechanism. To understand how Prx inhibits ComR at the molecular level we pursued an X-ray crystal structure of Prx bound to ComR. The structural data supported by solution X-ray scattering data demonstrate that Prx induces a conformational change in ComR to directly access the DNA binding domain. Furthermore, electromobility shift assays and competition binding assays reveal that Prx effectively uncouples the inter-domain conformational change that is required for activation of ComR by the signaling molecule XIP. Although to our knowledge the molecular mechanism of quorum-sensing inhibition by Prx is unique, it is analogous to the mechanism employed by the phage protein Aqs1 in Pseudomonas aeruginosa. Together, this demonstrates an example of convergent evolution between Gram-positive and Gram-negative phages to inhibit quorum-sensing, and highlights the versatility of small phage proteins.


2021 ◽  
Vol 111 ◽  
pp. 104894
Author(s):  
Aiping Chang ◽  
Qiaomei He ◽  
Li Li ◽  
Xiaodan Yu ◽  
Shiwei Sun ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 376-382
Author(s):  
Chesley A. Kemp ◽  
Donna K. McCullough ◽  
Dobrusia Bialonska ◽  
Paul J. T. Johnson

Quorum sensing (QS) is a form of bacterial communication involved in the production of virulence factors in many species. As a result, inhibition of quorum sensing may be of use in mitigating pathogenesis. The signaling molecule indole is currently being investigated as a target for quorum sensing inhibition (QSI) and the indole derivative indole-3-carboxaldehyde (ICA) has been shown to inhibit quorum sensing-mediated behaviors in Escherichia coli. In this study, we investigate bromination as a method of increasing the QSI capabilities of indole carboxaldehydes. The IC50 values of three monobrominated indole carboxaldehydes (5-bromoindole-3-carboxaldehyde, 6-bromoindole-3-carboxaldehyde, and 7-bromoindole-3-carboxaldehyde) were determined and compared to the IC50 value of ICA. The bromination of these indole carboxaldehydes reduced the IC50 values between 2- and 13-fold, indicating that bromination significantly increases the potency of these indole carboxaldehydes.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 321
Author(s):  
Shekh Sabir ◽  
Tsz Tin Yu ◽  
Rajesh Kuppusamy ◽  
Basmah Almohaywi ◽  
George Iskander ◽  
...  

The quorum sensing (QS) system in multi-drug-resistant bacteria such as P. aeruginosa is primarily responsible for the development of antibiotic resistance and is considered an attractive target for antimicrobial drug discovery. In this study, we synthesised a series of novel selenourea and thiourea-containing dihydropyrrol-2-one (DHP) analogues as LasR antagonists. The selenium DHP derivatives displayed significantly better quorum-sensing inhibition (QSI) activities than the corresponding sulphur analogues. The most potent analogue 3e efficiently inhibited the las QS system by 81% at 125 µM and 53% at 31 µM. Additionally, all the compounds were screened for their minimum inhibitory concentration (MIC) against the Gram-positive bacterium S. aureus, and interestingly, only the selenium analogues showed antibacterial activity, with 3c and 3e being the most potent with a MIC of 15.6 µM.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 74
Author(s):  
Andrea Muras ◽  
Ana Parga ◽  
Celia Mayer ◽  
Ana Otero

Interfering with the quorum sensing bacterial communication systems has been proposed as a promising strategy to control bacterial biofilm formation, a key process in biofouling development. Appropriate in vitro biofilm-forming bacteria models are needed to establish screening methods for innovative anti-biofilm and anti-microfouling compounds. Four marine strains, two Pseudoalteromonas spp. and two Vibrio spp., were selected and studied with regard to their biofilm-forming capacity and sensitivity to quorum sensing (QS) inhibitors. Biofilm experiments were performed using two biofilm cultivation and quantification methods: the xCELLigence® system, which allows online monitoring of biofilm formation, and the active attachment model, which allows refreshment of the culture medium to obtain a strong biofilm that can be quantified with standard staining methods. Although all selected strains produced acyl-homoserine-lactone (AHL) QS signals, only the P. flavipulchra biofilm, measured with both quantification systems, was significantly reduced with the addition of the AHL-lactonase Aii20J without a significant effect on planktonic growth. Two-species biofilms containing P. flavipulchra were also affected by the addition of Aii20J, indicating an influence on the target bacterial strain as well as an indirect effect on the co-cultured bacterium. The use of xCELLigence® is proposed as a time-saving method to quantify biofilm formation and search for eco-friendly anti-microfouling compounds based on quorum sensing inhibition (QSI) strategies. The results obtained from these two in vitro biofilm formation methods revealed important differences in the response of biosensor bacteria to culture medium and conditions, indicating that several strains should be used simultaneously for screening purposes and the cultivation conditions should be carefully optimized for each specific purpose.


Sign in / Sign up

Export Citation Format

Share Document