Numerical Modeling for Electrical Transport Properties of Saturated Porous Media with Lattice Gas Automation

2004 ◽  
Vol 47 (5) ◽  
pp. 1019-1024 ◽  
Author(s):  
Wen-Zheng YUE ◽  
Guo TAO ◽  
Ke-Qin ZHU
2006 ◽  
Vol 9 (03) ◽  
pp. 274-279 ◽  
Author(s):  
Guo Tao ◽  
Wenzheng Yue ◽  
Baotong Li ◽  
Chaoliang Fang

Summary We have studied the electrical transport properties of porous media and the physical meaning of Archie's parameters with 2D lattice gas automata (LGA). On the basis of our simulations, we have developed a set of new equations to calculate fluid saturation from electrical measurements. The calculations from the new equations show very good agreement with laboratory measurements and published data on sandstone samples. There are limitations for this study in applying mesoscale modeling to the resistivity-index/ water-saturation (I/Sw) relationship for porous rocks because only 2D models of sandstone rock were simulated. Some important factors like wettability were not modeled. However, current flow simulations on the 3D digital rock samples of various types reconstructed from thin sections and high-resolution CT scans of real rocks have been ongoing in our laboratory as the next step to address these issues. Introduction Archie's (1942) equations (F = aF-m and I = bSw-n, where a, b, m, and n are constants and called Archie parameters) have been the fundamental equations used to calculate fluid saturation of porous rocks from electrical well logs. There have long been questions and arguments about the true physical meaning of the Archie parameters because the micropore structure, the flow of fluid, and the electrical current in a porous medium cannot be directly observed and controlled in laboratory measurements. In oilfield electrical-logging-data interpretation, non-Archie behavior of the porous rocks (i.e., the I/Sw relationship not being linear on a log-log scale) has been increasingly observed and reported by log analysts and petroleum engineers (Diederix 1982). Diederix (1982), Li (1989), Worthington and Pallatt (1992), and Jing et al. (1993), among others, have studied this so-called "non-Archie phenomenon" of porous rocks extensively. The non-Archie phenomenon generally becomes more evident as the water saturation decreases further. However, because of the limitations of macroscale laboratory experiments, it is not possible to quantify the factors that influence the I/Sw relation. Many researchers have tried to simulate the behavior numerically at the pore scale. Schopper (1966) used a resistor network to study the formation factor/porosity relationship. Yale (1984) developed a 3D pore-network model to simulate the transport properties of porous rocks. Tao et al. (1995) used Yale's model to interpret electrical-conductivity and elastic-wave data simultaneously measured on fluid-saturated sandstone samples. Man and Jing (2001) further developed Yale's model to account for the electrical transport properties of multiphase-fluid-saturated porous media. Jonas et al. (2000) used a statistical network to study the physical basis of Archie's first equation. However, because these models do not simulate closely enough the real pore structures and fluid distributions, the theoretical modeling has achieved only limited success.


2021 ◽  
Author(s):  
Dongha Shin ◽  
Hwa Rang Kim ◽  
Byung Hee Hong

Since of its first discovery, graphene has attracted much attention because of the unique electrical transport properties that can be applied to high-performance field-effect transistor (FET). However, mounting chemical functionalities...


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 746
Author(s):  
Meiling Hong ◽  
Lidong Dai ◽  
Haiying Hu ◽  
Xinyu Zhang

A series of investigations on the structural, vibrational, and electrical transport characterizations for Ga2Se3 were conducted up to 40.2 GPa under different hydrostatic environments by virtue of Raman scattering, electrical conductivity, high-resolution transmission electron microscopy, and atomic force microscopy. Upon compression, Ga2Se3 underwent a phase transformation from the zinc-blende to NaCl-type structure at 10.6 GPa under non-hydrostatic conditions, which was manifested by the disappearance of an A mode and the noticeable discontinuities in the pressure-dependent Raman full width at half maximum (FWHMs) and electrical conductivity. Further increasing the pressure to 18.8 GPa, the semiconductor-to-metal phase transition occurred in Ga2Se3, which was evidenced by the high-pressure variable-temperature electrical conductivity measurements. However, the higher structural transition pressure point of 13.2 GPa was detected for Ga2Se3 under hydrostatic conditions, which was possibly related to the protective influence of the pressure medium. Upon decompression, the phase transformation and metallization were found to be reversible but existed in the large pressure hysteresis effect under different hydrostatic environments. Systematic research on the high-pressure structural and electrical transport properties for Ga2Se3 would be helpful to further explore the crystal structure evolution and electrical transport properties for other A2B3-type compounds.


Sign in / Sign up

Export Citation Format

Share Document