Density functional theory and MP2 calculations of the transition states and reaction paths on coupling reaction of methane through plasma

2010 ◽  
Vol 22 (5) ◽  
pp. 430-433 ◽  
Author(s):  
En-Cui Yang ◽  
Xiao-Jun Zhao ◽  
Peng Tian ◽  
Jin-Ku Hao
2007 ◽  
Vol 06 (03) ◽  
pp. 549-562
Author(s):  
ABRAHAM F. JALBOUT

The transition states for the H 2 NO decomposition and rearrangements mechanisms have been explored by the CBS-Q method or by density functional theory. Six transition states were located on the potential energy surface, which were explored with the Quadratic Complete Basis Set (CBS-Q) and Becke's one-parameter density functional hybrid methods. Interesting deviations between the CBS-Q results and the B1LYP density functional theory lead us to believe that further study into this system is necessary. In the efforts to further assess the stabilities of the transition states, bond order calculations were performed to measure the strength of the bonds in the transition state.


2020 ◽  
Vol 44 (5) ◽  
pp. 1254-1264
Author(s):  
Shaya AL-RAQA ◽  
İpek ÖMEROĞLU ◽  
Doğan ERBAHAR ◽  
Mahmut DURMUŞ

Phenyl-4,4-di(3,6-dibutoxyphthalonitrile) (3) was synthesized by the reaction of 1,4-phenylenebisboronic acid (1) and 4-bromo-3,6-dibutoxyphthalonitrile (2), using Suzuki cross-coupling reaction. The newly synthesized compound (3) was characterized by FT-IR, MALDI-MS, ESI-MS, 1H-NMR, 13C-NMR, and 13C-DEPT-135-NMR. The fluorescence property of phenyl-4,4-di(3,6- dibutoxyphthalonitrile) (3) towards various metal ions was investigated by fluorescence spectroscopy, and it was observed thatthe compound (3) displayed a significantly ‘turn-off’ response to Fe3+, which was referred to 1:2 complex formation between ligand (3) and Fe3+. The compound was also studied via density functional theory calculations revealing the interaction mechanism of the molecule with Fe3+ ions.


2015 ◽  
Vol 1 (9) ◽  
pp. e1500656 ◽  
Author(s):  
Kun Wu ◽  
Zhiliang Huang ◽  
Xiaotian Qi ◽  
Yingzi Li ◽  
Guanghui Zhang ◽  
...  

Copper-catalyzed aerobic oxidative C–H/N–H coupling between simple ketones and diamines was developed toward the synthesis of a variety of pyrazines. Various substituted ketones were compatible for this transformation. Preliminary mechanistic investigations indicated that radical species were involved. X-ray absorption fine structure experiments elucidated that the Cu(II) species 5 coordinated by two N atoms at a distance of 2.04 Å and two O atoms at a shorter distance of 1.98 Å was a reactive one for this aerobic oxidative coupling reaction. Density functional theory calculations suggested that the intramolecular coupling of cationic radicals was favorable in this transformation.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4043 ◽  
Author(s):  
Temiloluwa T. Adejumo ◽  
Nikolaos V. Tzouras ◽  
Leandros P. Zorba ◽  
Dušanka Radanović ◽  
Andrej Pevec ◽  
...  

Two new Zn(II) complexes with tridentate hydrazone-based ligands (condensation products of 2-acetylthiazole) were synthesized and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction methods. The complexes 1, 2 and recently synthesized [ZnL3(NCS)2] (L3 = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium) complex 3 were tested as potential catalysts for the ketone-amine-alkyne (KA2) coupling reaction. The gas-phase geometry optimization of newly synthesized and characterized Zn(II) complexes has been computed at the density functional theory (DFT)/B3LYP/6–31G level of theory, while the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO and LUMO) energies were calculated within the time-dependent density functional theory (TD-DFT) at B3LYP/6-31G and B3LYP/6-311G(d,p) levels of theory. From the energies of frontier molecular orbitals (HOMO–LUMO), the reactivity descriptors, such as chemical potential (μ), hardness (η), softness (S), electronegativity (χ) and electrophilicity index (ω) have been calculated. The energetic behavior of the investigated compounds (1 and 2) has been examined in gas phase and solvent media using the polarizable continuum model. For comparison reasons, the same calculations have been performed for recently synthesized [ZnL3(NCS)2] complex 3. DFT results show that compound 1 has the smaller frontier orbital gap so, it is more polarizable and is associated with a higher chemical reactivity, low kinetic stability and is termed as soft molecule.


RSC Advances ◽  
2015 ◽  
Vol 5 (5) ◽  
pp. 3825-3832 ◽  
Author(s):  
Tsung-Fan Teng ◽  
Santhanamoorthi Nachimuthu ◽  
Wei-Hsiu Hung ◽  
Jyh-Chiang Jiang

We employed density functional theory (DFT) calculations to examine the adsorption configurations and possible reaction paths for H2S on a Ge(100) surface.


RSC Advances ◽  
2016 ◽  
Vol 6 (42) ◽  
pp. 35855-35858 ◽  
Author(s):  
Gui-Yu Ruan ◽  
Zheng-Hang Qi ◽  
Ye Zhang ◽  
Wei Liu ◽  
Yong Wang

The possible transition states of C–H activation on the dehydrogenate coupling of arenes with alcohols employing Ag(i) additives were investigated using B3LYP density functional theory.


Sign in / Sign up

Export Citation Format

Share Document