Synthesis, Crystal Structure, Theoretical Calculation, Specific Heat Capacity, and Thermodynamic Properties of 4,4′-Bis(3-N-methoxyformyl thioureido)-diphenyloxide

2010 ◽  
Vol 28 (10) ◽  
pp. 1902-1906 ◽  
Author(s):  
Xinyu Zhang ◽  
Jie Huang ◽  
Jirong Song ◽  
Kangzheng Xu ◽  
Qixun Ban
2016 ◽  
Vol 30 (04) ◽  
pp. 1650026 ◽  
Author(s):  
Hüseyin Koç ◽  
Erhan Eser

The aim of this paper is to provide a simple and reliable analytical expression for the thermodynamic properties calculated in terms of the Debye model using the binomial coefficient, and examine specific heat capacity of CdTe in the 300–1400 K temperature range. The obtained results have been compared with the corresponding experimental and theoretical results. The calculated results are in good agreement with the other results over the entire temperature range.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Kian Eisazadeh-Far ◽  
Hameed Metghalchi ◽  
James C. Keck

Thermodynamic properties of ionized gases at high temperatures have been calculated by a new model based on local equilibrium conditions. Calculations have been done for nitrogen, oxygen, air, argon, and helium. The temperature range is 300–100,000 K. Thermodynamic properties include specific heat capacity, density, mole fraction of particles, and enthalpy. The model has been developed using statistical thermodynamics methods. Results have been compared with other researchers and the agreement is good.


2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Manauwar Ali Ansari

AbstractIn this paper, a new theoretical two-phase (solid–liquid) type model of melting temperature has developed based on the modified Gibbs–Thomson equation. Further, it is extended to derive other different size-dependent thermodynamic properties such as cohesive energy, Debye temperature, specific heat capacity, the thermal and electrical conductivity of metallic nanoparticles. Quantitative calculation of the effect of size on thermodynamic properties resulted in, varying linearly with the inverse of characteristic length of nanomaterials. The models are applied to Al, Pb, Ag, Sn, Mo, W, Co, Au and Cu nanoparticles of spherical shape. The melting temperature, Debye temperature, thermal and electrical conductivity are found to decrease with the decrease in particle size, whereas the cohesive energy and specific heat capacity are increased with the decrease in particle size. The present model is also compared with previous models and found consistent. The results obtained with this model validated with experimental and simulation results from several sources that show similar trends between the model and experimental results. Graphic abstract


2019 ◽  
Vol 33 (08) ◽  
pp. 1950051
Author(s):  
Martin Tchoffo ◽  
William Degaulle Waladi Gueagni ◽  
Georges Collince Fouokeng ◽  
Lionel Tenemeza Kenfack ◽  
Lukong Cornelius Fai

In this paper, we address the influence of Dzyaloshinskii Moriya (DM) interaction on the thermodynamic properties of a multiferroic antiferromagnetic spin system using the spin wave theory (SWT) as a diagonalization method which, associated to the statistical physics, helps to evaluate the statistical sum. The basic factors in thermodynamics, such as the Boltzmann entropy and the specific heat capacity at thermal equilibrium, are obtained. Analyzing the numerical results, it follows that the DM interaction is the best candidate that can help to maintain in long time the system in its coherent state. Furthermore, we find that the influence of the DM interaction is more accentuated at low-temperature and that it enables the system to release heat energy. On the other hand, the fact that the specific heat capacity tends to the constant clearly shows that the system obeys the Dulong–Petit law. In addition, our results also show that for high magnetic field (greater than B[Formula: see text]=[Formula: see text]30 Tesla), the magnetic field dependence of both entropy and specific heat shows a peak-like behavior and that the DM interaction raises the corresponding critical magnetic field but lowers the peak amplitude. It follows that the spin-flop transition occurs in the system and that the strong magnetic field withdraw the antiferromagnetic phase. Overall, we find that the DM interaction is a promising candidate for the control of our system.


2014 ◽  
Vol 118 (1) ◽  
pp. 493-497 ◽  
Author(s):  
Lubka Atanasova ◽  
Ginka Baikusheva-Dimitrova ◽  
Georgy Gospodinov

2016 ◽  
Vol 30 (24) ◽  
pp. 1650175
Author(s):  
B. I. Adetunji ◽  
A. S. Olayinka ◽  
J. B. Fashae ◽  
V. C. Ozebo

The electronic structures, lattice dynamics and thermodynamic properties of rare-earth intermetallic ScCd alloy are studied by the first-principles plane-wave pseudopotential method within the generalized gradient approximation in the framework of density functional pertubation theory. The band structure, density of states, phonon dispersion frequencies, vibrational free energy [Formula: see text], specific heat capacity [Formula: see text] and entropy are studied between 0 K and 1500 K. Finally, using the calculated phonon density of states, the thermodynamic properties are determined within the quasi-harmonic approximation and a value of 47.9 (J/mol⋅K) at 300 K for specific heat capacity of ScCd is predicted.


Sign in / Sign up

Export Citation Format

Share Document