An Efficient Way for the Recognition of Zinc Ion via the Fluorescence Enhancement

2012 ◽  
Vol 30 (7) ◽  
pp. 1410-1414 ◽  
Author(s):  
Qiuguang Sang ◽  
Jingkui Yang
2011 ◽  
Vol 50 (20) ◽  
pp. 10493-10504 ◽  
Author(s):  
Gui-Chao Kuang ◽  
John R. Allen ◽  
Michelle A. Baird ◽  
Brian T. Nguyen ◽  
Lu Zhang ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5458 ◽  
Author(s):  
Min Seon Kim ◽  
Dongju Yun ◽  
Ju Byeong Chae ◽  
Haeri So ◽  
Hyojin Lee ◽  
...  

A novel fluorescent turn-on chemosensor DHADC ((E)-3-((4-(diethylamino)-2-hydroxybenzylidene)amino)-2,3-dihydrothiophene-2-carboxamide) has been developed and used to detect Zn2+ and CN−. Compound DHADC displayed a notable fluorescence increase with Zn2+. The limit of detection (2.55 ± 0.05 μM) for zinc ion was far below the standard (76 μM) of the WHO (World Health Organization). In particular, compound DHADC could be applied to determine Zn2+ in real samples, and to image Zn2+ in both HeLa cells and zebrafish. Additionally, DHADC could detect CN− through a fluorescence enhancement with little inhibition with the existence of other types of anions. The detection processes of compound DHADC for Zn2+ and CN− were demonstrated with various analytical methods like Job plots, 1H NMR titrations, and ESI-Mass analyses.


2021 ◽  
pp. 116275
Author(s):  
Jin-Dou Huang ◽  
Shibo Cheng ◽  
Wenliang Li ◽  
Feng Lin ◽  
Huipeng Ma ◽  
...  

Author(s):  
А.С. Шадрина ◽  
И.В. Терешкина ◽  
Я.З. Плиева ◽  
Д.Н. Кушлинский ◽  
Д.О. Уткин ◽  
...  

Матриксные металлопротеиназы (ММП) - ферменты класса гидролаз, осуществляющие ферментативный катализ с помощью связанного в активном центре иона цинка. Функции ММП разнообразны, и нарушение баланса их активности может быть одним из этиологических факторов различных заболеваний. В данном обзоре рассмотрена классификация ММП человека, особенности их структуры и регуляции, а также роль в физиологических и патологических процессах в организме человека. Приведен перечень наиболее изученных на настоящий момент полиморфных вариантов генов MMП, описаны их функциональные эффекты и представлены результаты ассоциативных исследований. Matrix metalloproteinases (MMPs) are enzymes of the hydrolase class that carry out enzymatic catalysis with the help of a zinc ion bound in the active center. MMP functions are diverse, and a disturbance in the balance of their activity may be one of the etiological factors of various diseases. In this review, the classification of human MMP, the features of their structure and regulation, as well as the role in physiological and pathological processes in the human body are considered. A list of the most studied polymorphic versions of MMP genes has been given, their functional effects have been described, and the results of associative studies have been presented.


2019 ◽  
Author(s):  
Lukas P Smaga ◽  
Nicholas W Pino ◽  
Gabriela E Ibarra ◽  
Vishnu Krishnamurthy ◽  
Jefferson Chan

Controlled light-mediated delivery of biological analytes enables the investigation of highly reactivity molecules within cellular systems. As many biological effects are concentration dependent, it is critical to determine the location, time, and quantity of analyte donation. In this work, we have developed the first photoactivatable donor for formaldehyde (FA). Our optimized photoactivatable donor, photoFAD-3, is equipped with a fluorescence readout that enables monitoring of FA release with a concomitant 139-fold fluorescence enhancement. Tuning of photostability and cellular retention enabled quantification of intracellular FA release through cell lysate calibration. Application of photoFAD-3 uncovered the concentration range necessary for arresting wound healing in live cells. This marks the first report where a photoactivatable donor for any analyte has been used to quantify intracellular release.


2019 ◽  
Author(s):  
Yujie Tu ◽  
Junkai Liu ◽  
Haoke Zhang ◽  
Qian Peng ◽  
Jacky W. Y. Lam ◽  
...  

Aggregation-induced emission (AIE) is an unusual photophysical phenomenon and provides an effective and advantageous strategy for the design of highly emissive materials in versatile applications such as sensing, imaging, and theragnosis. "Restriction of intramolecular motion" is the well-recognized working mechanism of AIE and have guided the molecular design of most AIE materials. However, it sometimes fails to be workable to some heteroatom-containing systems. Herein, in this work, we take more than one excited state into account and specify a mechanism –"restriction of access to dark state (RADS)" – to explain the AIE effect of heteroatom-containing molecules. An anthracene-based zinc ion probe named APA is chosen as the model compound, whose weak fluorescence in solution is ascribed to the easy access from the bright (π,π*) state to the closelying dark (n,π*) state caused by the strong vibronic coupling of the two excited states. By either metal complexation or aggregation, the dark state is less accessible due to the restriction of the molecular motion leading to the dark state and elevation of the dark state energy, thus the emission of the bright state is restored. RADS is found to be powerful in elucidating the photophysics of AIE materials with excited states which favor non-radiative decay, including overlap-forbidden states such as (n,π*) and CT states, spin-forbidden triplet states, which commonly exist in heteroatom-containing molecules.


Sign in / Sign up

Export Citation Format

Share Document