kanamycin resistance gene
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 3)

H-INDEX

19
(FIVE YEARS 0)

Author(s):  
Molly R Gordon ◽  
Jin Zhu ◽  
Victoria Qu ◽  
Rong Li

Abstract To maintain genome stability, organisms depend on faithful chromosome segregation, a process affected by diverse genetic pathways, some of which are not directly linked to mitosis. In this study, we set out to explore one such pathway represented by an under-characterized gene, SNO1, identified previously in screens of the Yeast Knockout (YKO) library for mitotic fidelity genes. We found that the causative factor increasing mitotic error rate in the sno1Δ mutant is not loss of the Sno1 protein, but rather perturbation to the mRNA of the neighboring convergent gene, CTF13, encoding an essential component for forming the yeast kinetochore. This is caused by a combination of the Kanamycin resistance gene and the transcriptional terminator used in the YKO library affecting the mRNA level and quality of the neighboring convergent gene. We further provide a list of gene pairs potentially subjected to this artifact, which may be useful for accurate phenotypic interpretation of YKO mutants.


2020 ◽  
Vol 30 (2) ◽  
pp. 231-242
Author(s):  
Shruti Shukla ◽  
Anita Rani ◽  
Meeta Jain ◽  
Vineet Kumar

Embryonic tip explants of 92 Indian soyabean and 7 advanced breeding lines derived from soaked mature seeds were inoculated and co-cultivated for 5-day with Agrobacterium strain EHA105 carrying the binary vector pCambia1305.1 containing a hygromycin and kanamycin resistance gene as plant and bacterial selectable markers, respectively. Transient expression of transgene was monitored by histochemical localization of β-glucouronidase (GUSPlus) reporter activity in transformed ET tissues. A high genetic variability for Agrobacterium-infection ranging from 3.8 to 100% was observed in the form of transient GUS expression. Five highly efficient genotypes, namely DS-228, JS 335, JS 72-44, KHSb2, and JS 72-280 with transient GUS expression of 100, 98.1, 96.5, 96 and 92%, respectively were identified. In addition, various infectivity patterns in these genotypes were observed. Genotypes with very high transient GUS expression identified in this study may improve success rate of development of transgenic soybean. Plant Tissue Cult. & Biotech. 30(2): 231-242, 2020 (December)


2020 ◽  
Vol 42 (11) ◽  
pp. 2223-2230
Author(s):  
Rafael A. Donassolo ◽  
Marcos Roberto A. Ferreira ◽  
Clóvis Moreira Jr ◽  
Lucas M. dos Santos ◽  
Emili Griep ◽  
...  

2008 ◽  
Vol 74 (13) ◽  
pp. 4036-4043 ◽  
Author(s):  
Geoffrey W. Pittman ◽  
Stevens M. Brumbley ◽  
Peter G. Allsopp ◽  
Scott L. O'Neill

ABSTRACT Bacteria from the hindguts of Dermolepida albohirtum larvae were assessed for their potential to be used in paratransgenic strategies that target scarab pests of sugarcane. Bacteria isolated in pure culture from the hindguts of D. albohirtum larvae were from the Proteobacteria, Firmicutes, and Actinobacteria phyla and matched closely with taxa from intestinal and rhizosphere environments. However, these isolates were not the most common gut-associated bacteria identified in denaturing gradient gel electrophoresis (DGGE) hindgut profiles. Subsequently, eight species of gut bacteria were fed to larvae, and RNA-based DGGE analysis of 16S rRNA was used to detect the persistence of these isolates in the hindgut environment. One of these isolates (Da-11) remained metabolically active in the hindgut for 19 days postconsumption. Da-11 most likely forms a new genus within the Burkholderiales order, along with taxa independently identified from larvae of the European scarab pest, Melolontha melolontha. Using the EZ::Tn5 transposon system, a kanamycin resistance gene was inserted into the chromosome of Da-11, thus establishing a stable transformation technique for this species. A second feeding trial that included inoculating approximately 400 transgenic Da-11 cells onto a food source resulted in a density of 1 × 106 transgenic Da-11 cells/ml in the hindguts of larvae at 9 days postconsumption. These populations were maintained in the hindgut for at least another 12 days. The successful isolation, genetic transformation, and establishment of transgenic Da-11 cells in the hindguts of D. albohirtum larvae fulfill fundamental requirements for the future development of a paratransgenic approach to control scarab pests of sugarcane.


2006 ◽  
Vol 73 (5) ◽  
pp. 1635-1645 ◽  
Author(s):  
G. Valsesia ◽  
G. Medaglia ◽  
M. Held ◽  
W. Minas ◽  
S. Panke

ABSTRACT Lantibiotics such as gallidermin are lanthionine-containing polypeptide antibiotics produced by gram-positive bacteria that might become relevant for the treatment of various infectious diseases. So far, self-toxicity has prevented the isolation of efficient overproducing strains, thus hampering their thorough investigation and preventing their exploitation in fields other than the food area. We wanted to investigate the effect of lantibiotic precursor peptides on the producing strains in order to evaluate novel strategies for the overproduction of these promising peptides. In this study, gallidermin was chosen as a representative example of the type A lantibiotics. A Staphylococcus gallinarum Tü3928 mutant, whose gene for the extracellular pregallidermin protease GdmP was replaced by a kanamycin-resistance gene, was constructed. Mass spectrometry (MS) analysis indicated that this mutant produced fully posttranslationally modified gallidermin precursors with truncated versions of the leader peptide, but not the entire leader as predicted from the gdmA sequence. In filter-on-plate assays, these truncated pregallidermins showed no toxicity against Staphylococcus gallinarum Tü3928 up to a concentration of 8 g/liter (corresponding to approximately 2.35 mM), while gallidermin produced clear inhibitory zones at concentrations as low as 0.25 g/liter (0.12 mM). We showed that the lack of toxicity is due entirely to the presence of the truncated leader, since MS as well as bioassay analysis showed that the peptides resulting from tryptic cleavage of pregallidermins and gallidermin produced by S. gallinarum Tü3928 had identical masses and approximately the same specific activity. This demonstrates that even a shortened leader sequence is sufficient to prevent the toxicity of mature gallidermin. In nonoptimized fermentations, the gdmP mutant produced pregallidermin to a 50%-higher molar titer, suggesting that the absence of self-toxicity has a beneficial effect on gallidermin production and giving a first confirmation of the suitability of the overproduction strategy.


2006 ◽  
Vol 72 (2) ◽  
pp. 1288-1294 ◽  
Author(s):  
David-Nicolas Chaperon

ABSTRACT This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3′-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases.


Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 343-349 ◽  
Author(s):  
Sébastien Guiral ◽  
Vincent Hénard ◽  
Maria-Halima Laaberki ◽  
Chantal Granadel ◽  
Marc Prudhomme ◽  
...  

In this paper, the construction and evaluation of a chromosomal expression platform (CEP), which allows controlled gene expression following ectopic integration into the chromosome of Streptococcus pneumoniae, is described. CEP is based on the well-studied maltosaccharide-inducible system. To facilitate integration at CEP, a plasmid, pCEP, capable of replication in Escherichia coli, but not in S. pneumoniae, was assembled. This plasmid contains an expression/selection cassette flanked on each side by more than 2 kb of pneumococcal DNA. The cassette comprises a maltose-inducible promoter, PM, separated from a kanamycin-resistance gene by NcoI and BamHI cloning sites. Clones harbouring the gene of interest integrated at CEP under the control of PM can be obtained through direct transformation of an S. pneumoniae recipient with ligation products between that gene and NcoI/BamHI-digested pCEP DNA, followed by selection for kanamycin-resistant transformants.


2004 ◽  
Vol 186 (22) ◽  
pp. 7804-7806 ◽  
Author(s):  
Renata Moreno ◽  
Aurelio Hidalgo ◽  
Felipe Cava ◽  
Roberto Fernández-Lafuente ◽  
José Manuel Guisán ◽  
...  

ABSTRACT The expression of an antisense RNA revealed that an Mn-catalase was required in Thermus thermophilus for aerobic but not for anaerobic growth. The antisense system is based on the constitutive expression of a “bicistronic” transcript consisting of the kanamycin resistance gene mRNA followed by the antisense RNA against the selected target.


2002 ◽  
Vol 184 (21) ◽  
pp. 5926-5934 ◽  
Author(s):  
Jinbiao Chen ◽  
Donald J. Leblanc ◽  
Dominique M. Galli

ABSTRACT Plasmid pVT745 from Actinobacillus actinomycetemcomitans strain VT745 can be transferred to other A. actinomycetemcomitans strains at a frequency of 10−6. Screening of transconjugants revealed that the DNA of pDMG21A, a pVT745 derivative containing a kanamycin resistance gene, displayed a structural rearrangement after transfer. A 9-kb segment on the plasmid had switched orientation. The inversion was independent of RecA and required the activity of the pVT745-encoded site-specific recombinase. This recombinase, termed Inv, was highly homologous to invertases of the Din family. Two recombination sites of 22 bp, which are arranged in opposite orientation and which function as DNA crossover sequences, were identified on pVT745. One of the sites was located adjacent to the 5′ end of the invertase gene, inv. Inversion of the 9-kb segment on pVT745 derivatives has been observed in all A. actinomycetemcomitans strains tested except for the original host, VT745. This would suggest that a host factor that is either inactive or absent in VT745 is required for efficient recombination. Inactivation of the invertase in the donor strain resulted in a 1,000-fold increase in the number of transconjugants upon plasmid transfer. It is proposed that an activated invertase causes the immediate loss of the plasmid in most recipient cells after mating. No biological role has been associated with the invertase as of yet.


Sign in / Sign up

Export Citation Format

Share Document